Skip to main content

On the Non-uniqueness of Solutions to the Perfect Phylogeny Mixture Problem

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11183))

Included in the following conference series:

Abstract

Tumors exhibit extensive intra-tumor heterogeneity, the presence of groups of cellular populations with distinct sets of somatic mutations. This heterogeneity is the result of an evolutionary process, described by a phylogenetic tree. The problem of reconstructing a phylogenetic tree T given bulk sequencing data from a tumor is more complicated than the classic phylogeny inference problem. Rather than observing the leaves of T directly, we are given mutation frequencies that are the result of mixtures of the leaves of T. The majority of current tumor phylogeny inference methods employ the perfect phylogeny evolutionary model. In this work, we show that the underlying Perfect Phylogeny Mixture combinatorial problem typically has multiple solutions. We provide a polynomial-time computable upper bound on the number of solutions. We use simulations to identify factors that contribute to and counteract non-uniqueness of solutions. In addition, we study the sampling performance of current methods, identifying significant biases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We expect the counting problem #PPM to be #P-complete, as to date no NP-complete problem has been found whose counting version is not NP-complete [14]. To prove that #PPM is #P-complete, we need to give a parsimonious reduction from a known #P-complete problem to #PPM.

References

  1. Deshwar, A.G., et al.: Abstract B2–59: PhyloSpan: Using multi-mutation reads to resolve subclonal architectures from heterogeneous tumor samples. Cancer Res. 75(22 Suppl. 2), B2-59–B2-59 (2015)

    Google Scholar 

  2. Deshwar, A.G., et al.: PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16(1), 35 (2015)

    Article  Google Scholar 

  3. El-Kebir, M., Oesper, L., Acheson-Field, H., Raphael, B.J.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

    Google Scholar 

  4. El-Kebir, M., Satas, G., Oesper, L., Raphael, B.J.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

    Google Scholar 

  5. El-Kebir, M., Satas, G., Raphael, B.J.: Inferring parsimonious migration histories for metastatic cancers. Nature Genetics 50(5), 718–726 (2018)

    Google Scholar 

  6. Fisher, R., Pusztai, L., Swanton, C.: Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108(3), 479–485 (2013)

    Article  Google Scholar 

  7. Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 7(3), 280–287 (1978)

    Article  MathSciNet  Google Scholar 

  8. Gerstung, M., et al.: PCAWG Evolution, Heterogeneity Working Group, and PCAWG network. The evolutionary history of 2,658 cancers. bioRxiv, p. 161562, July 2017

    Google Scholar 

  9. Jamal-Hanjani, M., et al.: Trackingthe evolution of non-small-cell lung cancer. New Engl. J. Med. 376(22), 2109–2121 (2017)

    Article  Google Scholar 

  10. Jiang, Y., Qiu, Y., Minn, A.J., Zhang, N.R.: Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc. National Acad. Sci. United States Am. 113(37), E5528–37 (2016)

    Google Scholar 

  11. Jiao, W., Vembu, S., Deshwar, A.G., Stein, L., Morris, Q.: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 15, 35 (2014)

    Article  Google Scholar 

  12. Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  Google Scholar 

  13. Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148, 497–508 (1847)

    Article  Google Scholar 

  14. Livne, N.: A note on #P-completeness of NP-witnessing relations. Inf. Process. Lett. 109(5), 259–261 (2009)

    Article  MathSciNet  Google Scholar 

  15. Łuksza, M., et al.: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551(7681), 517 (2017)

    Google Scholar 

  16. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, C., Beerenwinkel, N.: Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. bioRxiv, p. 234914, December 2017

    Google Scholar 

  17. Malikic, S., McPherson, A.W., Donmez, N., Sahinalp, C.S.: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9), 1349–1356 (2015)

    Article  Google Scholar 

  18. McGranahan, N., et al.: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Trans. Med. 7(283), 283ra54 (2015)

    Google Scholar 

  19. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194(4260), 23–8 (1976)

    Article  Google Scholar 

  20. Popic, V., Salari, R., Hajirasouliha, I., Kashef-Haghighi, D., West, R.B., Batzoglou, S.: Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16(1), 91 (2015)

    Article  Google Scholar 

  21. Propp, J.G., Wilson, D.B., James Gary Propp and David Bruce Wilson: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27(2), 170–217 (1998)

    Article  MathSciNet  Google Scholar 

  22. Schwartz, R., Schäffer, A.A., Russell Schwartz and Alejandro: The evolution of tumour phylogenetics: principles and practice. Nature Rev. Genet. 18(4), 213–229 (2017)

    Article  Google Scholar 

  23. Strino, F., Parisi, F., Micsinai, M., Kluger, Y.: Trap: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 41(17), e165 (2013)

    Article  Google Scholar 

  24. Tabassum, D.P., Polyak, K.: Tumorigenesis: it takes a village. Nature Rev. Cancer 15(8), 473–483 (2015)

    Article  Google Scholar 

  25. Turajlic, S., et al.: Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173(3), 581–594 (2018)

    Google Scholar 

  26. Turajlic, S., et al.: Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173(3), 581–594 (2018)

    Google Scholar 

  27. Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Math. Proc. Camb. Philos. Soc. 44(4), 463–482 (1948)

    Article  MathSciNet  Google Scholar 

  28. Venkatesan, S., Swanton, C.: Tumor evolutionary principles: how intratumor heterogeneity influences cancer treatment and outcome. Am. Soc. Clin. Oncol. Educ. Book. 35, e141–9 (2016). American Society of Clinical Oncology. Meeting

    Google Scholar 

  29. Yuan, K., Sakoparnig, T., Markowetz, F., Beerenwinkel, N.: BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 16(1), 1 (2015)

    Article  Google Scholar 

  30. Zhang, A.W., et al.: Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173(7), 1755–1769.e22 (2018)

    Google Scholar 

Download references

Acknowledgements

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. The authors thank the anonymous referees for insightful comments that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El-Kebir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pradhan, D., El-Kebir, M. (2018). On the Non-uniqueness of Solutions to the Perfect Phylogeny Mixture Problem. In: Blanchette, M., Ouangraoua, A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science(), vol 11183. Springer, Cham. https://doi.org/10.1007/978-3-030-00834-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00834-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00833-8

  • Online ISBN: 978-3-030-00834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics