Skip to main content

Gliotransmitter Exocytosis and Its Consequences on Synaptic Transmission

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Calcium-dependent exocytosis of glutamate and purines from astrocytes is the mechanism of gliotransmission that has best been characterized up-to-date, but its putative functional consequences remain elusive. Here we review and expand a mathematical modeling framework originally introduced by De Pittà et al. (2011) to study how gliotransmission could affect synaptic coding and mechanisms of short-term plasticity. Consideration of analytical solutions for rate-based, mean field dynamics of gliotransmission-mediated synaptic neurotransmitter release provides a testable rationale to record functional modulations of synaptic transmission by gliotransmitters in experiments. At the same time, we present theoretical arguments that reveal how functional gliotransmission is a complex phenomenon that depends on the nature of structural and functional coupling between astrocytic and synaptic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci. 32:19–29

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network retrieving at low spike rates: I. Substrate-spikes, rates and neuronal gain. Network 2:259–273

    Article  Google Scholar 

  • Anderson MC, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18(17):6822–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bains JS, Oliet SHR (2007) Glia: they make your memories stick!. Trends Neurosci. 30(8):417–424

    Article  CAS  PubMed  Google Scholar 

  • Baldwin SA, Yao SYM, Hyde RJ, Ng AML, Foppolo S, Barnes K, Ritzel MWL, Cass CE, Young JD (2005) Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 280(16):15880–15887

    Article  CAS  Google Scholar 

  • Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, Sun L, Tellez J, Ritzel MWL, Claycomb WC, Cass CE, Yound JD, Billeter-Clark R, Boyett MR, Baldwin SA (2006) Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res 99(5):510–519

    Article  CAS  PubMed  Google Scholar 

  • Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 158:260–265

    Article  CAS  PubMed  Google Scholar 

  • Bergersen L, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JFH, Røe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V (2012) Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22(7):1690–1697

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7(6):613–620

    Article  CAS  PubMed  Google Scholar 

  • Bollmann JH, Sakmann B, Gerard J, Borst G (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    CAS  PubMed  Google Scholar 

  • Bonansco C, Couve A, Perea G, Ferradas CA, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33:1483–1492

    Article  PubMed  Google Scholar 

  • Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 104(10):4212–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang L, Zhou Y, Zheng L-H, Zhou Z (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25(40):9236–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171

    Article  CAS  PubMed  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Covelo A, Araque A (2018) Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife 7:e32237

    Article  PubMed  PubMed Central  Google Scholar 

  • Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570(3):567–582

    Article  CAS  PubMed  Google Scholar 

  • Cunhaa R, Ribeiro J (2000) ATP as a presynaptic modulator. Life Sci 68:119–137

    Article  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Lehre KP, Dehnes Y, Ullensvang K (2002) Transporters for synaptic transmitter on the glial cell plasma membrane. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: Glia in synaptic transmission, Chapter 1. Oxford University Press, New York, pp 47–61

    Google Scholar 

  • De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast 7607924

    Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7(12):e1002293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2013) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98

    Google Scholar 

  • De Pittà M, Brunel N, Volterra A (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience

    Google Scholar 

  • Debanne D, Guerineau NC, Giihwiler BH, Thompson SM (1996) Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol 491(1):163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195–230

    Article  CAS  PubMed  Google Scholar 

  • Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-\(\alpha \) and prostaglandins. J Biol Chem 281:30684–30696

    CAS  PubMed  Google Scholar 

  • Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24(3):722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. J Neurophysiol 87:140–148

    Article  PubMed  Google Scholar 

  • Griffiths M, Yao YMS, Abidi F, Phillips EVS, Cass EC, Young DJ, Baldwin AS (1997) Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem J 328(3):739–743

    Article  CAS  PubMed Central  Google Scholar 

  • Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N, Klaus FR, Kollias G, Fontana A, Pryce CR, Suter T, Volterra A (2015) Neuroinflammatory TNF\(\alpha \) impairs memory via astrocyte signaling. Cell 163(7):1730–1741

    Article  CAS  PubMed  Google Scholar 

  • Halassa M, Haydon P (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal J, Fix M, Takano T, Nedergaard M, Simon S (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104(35):14151–14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27(8):416–425

    Article  CAS  PubMed  Google Scholar 

  • Kreft M, Stenovec M, Rupnik M, Grilc S, Kržan M, Potokar M, Pangršič T, Haydon PG, Zorec R (2004) Properties of Ca\(^{2+}\)-dependent exocytosis in cultured astrocytes. Glia 46(4):437–445

    Article  PubMed  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Xu Q, Arcuino G, Kang J, Nedergaard M (2004a) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A 101(9):3172–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q-S, Xu Q, Kang J, Nedergaard M (2004b) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol 1:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc B Biol Sci 369(1654):20130609

    Article  CAS  Google Scholar 

  • Malarkey E, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589(17):4271–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchaland J, Calì C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca\(^{2+}\) transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28(37):9122–9132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milshtejn G (1975) Approximate integration of stochastic differential equations. Theory Probab Appl 19(3):557–562

    Article  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24(11):2633–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  • Mothet J-P, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102(15):5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1):113–126

    Article  CAS  PubMed  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23(5):1659–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panatier A, Vallée J, Haber M, Murai K, Lacaille J, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  PubMed  Google Scholar 

  • Pangršič T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758

    Article  PubMed  CAS  Google Scholar 

  • Papouin T, Oliet SHR (2014) Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc B Biol Sci 369(1654):20130601

    Article  CAS  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J, Oliet S (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17(20):7817–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34(38):12738–12744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436

    Article  CAS  PubMed  Google Scholar 

  • Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca\(^{2+}\)]\(_{i}\) triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56(1):38–49

    Article  PubMed  Google Scholar 

  • Rebola N, Rodrigues R, Lopes L, Richardson P, Oliveira C, Cunha R (2005) Adenosine A\(_{1}\) and A\(_{2\rm A}\) receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Rusakov DA (2001) The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca\(^{2+}\) depletion. Biophys J 81(4):1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca\(^{2+}\)-dependent glutamate release. Neuroscience 158(1):253–259

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Volterra A (2012) TNF\(\upalpha \) in synaptic function: switching gears. Trends Neurosci 35(10):638–647

    Google Scholar 

  • Santello M, Bezzi P, Volterra A (2011) TNF\(\upalpha \) controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105(15):5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  CAS  PubMed  Google Scholar 

  • Schubert V, Bouvier D, Volterra A (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: A comparative analysis. Glia 59(10):1472–1488

    Article  PubMed  Google Scholar 

  • Serrano A, Haddjeri N, Lacaille J, Robitaille R (2006) GABAergic network activation of glial cells underlies heterosynaptic depression. J Neurosci 26(20):5370–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor P, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17(19):7503–7522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skupin A, Falcke M (2010) Statistical analysis of calcium oscillations. Eur Phys J Spec Top 187:231–240

    Article  CAS  Google Scholar 

  • Softky W, Koch C (1993) The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenovec M, Kreft M, Grilc S, Pokotar M, Kreft ME, Pangršič T, Zorec R (2007) Ca\(^{2+}\)-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284

    Article  CAS  PubMed  Google Scholar 

  • Todd KJ, Darabid H, Robitaille R (2010) Perisynaptic glia discriminate patterns of motor nerve activity and influence plasticity at the neuromuscular junction. J Neurosci 30(35):11870–11882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsodyks M (2005) Activity-dependent transmission in neocortical synapses. In: Chow C, Gutkin B, Hansel D, Meunier C, Dalibard, J (eds) Methods and models in neurophysics (Chap. 7). Elsevier, pp 245–265

    Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-M, Wang H-K, Ye C-Q, Ge W, Chen Y, Jiang Z-L, Wu C-P, Poo M-M, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101(25):9441–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu X, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945–953

    Article  CAS  PubMed  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon P, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: An appraisal of Ca\(^{2+}\) as a signaling route. ASN Neuro 4(2):e00080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research work presented here is supported by the Junior Leader Postdoctoral Fellowship Program from “la Caixa” Banking Foundation (grant LCF/BQ/LI18/11630006) and was also previously sponsored by the European Commission through an International Outgoing Marie Skłodowska-Curie Fellowship (Project 331486 “Neuron-Astro-Nets”). MDP also wishes to acknowledge the support of the Basque Government by the BERC 2018–2021 program, as well as the support by the Spanish Ministry of Science, Innovation and Universities through the BCAM Severo Ochoa accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio De Pittà .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Derivation of Analytical Results

1.1 Appendix 1.1 Time-Dependent Solution of Mean Field Synaptic Dynamics

Equations 10.34 and 10.35 can conveniently be rewritten in the form

$$\begin{aligned} \frac{\mathrm {d}U_S(t)}{\mathrm {d}t}&= \left( \Omega _f+\nu _S(t)\right) U_0(t) - \left( \Omega _f + U_0(t)\nu _S(t)\right) U_S(t) = \left( \Omega _f+\nu _S(t)\right) U_0(t) - \Omega _u(t)U_S(t)\end{aligned}$$
(10.53)
$$\begin{aligned} \frac{\mathrm {d}X_S(t)}{\mathrm {d}t}&= \Omega _d - \left( \Omega _d + U_S(t)\nu _S(t)\right) X_S(t) = \Omega _d - \Omega _x(t)X_S(t) \end{aligned}$$
(10.54)

where \(\Omega _u(t),\,\Omega _x(t)\) are, respectively, defined by Eqs. 10.17 and 10.18. The equations for \(U_S,\,X_S\) are thus in the general form

$$\begin{aligned} \frac{\mathrm {d}x}{\mathrm {d}t} = -a(t) \cdot x + b(t) \end{aligned}$$
(10.55)

so that their solutions are of the type

$$\begin{aligned} x(t) = h(t)\,e^{-\int _0^t a(t\,')\mathrm {d}t\,'} \end{aligned}$$
(10.56)

In particular, an expression for h(t) in the above equation can be obtained replacing the generic solution x(t) in Eq. 10.55 and reads:

$$\begin{aligned} \frac{\mathrm {d}h(t)}{\mathrm {d}t} \mathrm {e}^{-\int _0^t a(t\,')\mathrm {d}t\,'} -a(t)x(t)&= b(t) -a(t)x(t) \nonumber \\&\Rightarrow h(t)=\int _{-\infty }^t b(t\,')\,\mathrm {e}^{\int _0^{t\,'} a(t\,'')\mathrm {d}t\,''}\mathrm {d}t\,' \end{aligned}$$
(10.57)

Accordingly,

$$\begin{aligned} U_S(t)&= \int _{-\infty }^t U_0(t\,') \left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\int _{t\,'}^t \Omega _u(t\,'')\mathrm {d}t\,''}\mathrm {d}t\,'\nonumber \\&= \int _{-\infty }^t U_0(t\,') \left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\int _{t\,'}^t \left( \Omega _f + U_0(t\,'')\nu _S(t\,'')\right) \mathrm {d}t\,''}\mathrm {d}t\,' \end{aligned}$$
(10.58)
$$\begin{aligned} X_S(t)&= \Omega _d \int _{-\infty }^t \mathrm {e}^{-\int _{t\,'}^t \Omega _x(t\,'')\mathrm {d}t\,''}\mathrm {d}t\,' = \Omega _d \int _{-\infty }^t \mathrm {e}^{-\int _{t\,'}^t \left( \Omega _d + \nu _S(t\,'')\right) \mathrm {d}t\,''}\mathrm {d}t\,' \end{aligned}$$
(10.59)

Under the assumptions that \(\nu _S(t)\) is continuous and differentiable, its value at \(t\,''\) can conveniently be expressed by the mean value theorem as \(\nu _S(t\,'') = \nu _S(t) - \nu _S\,'(t)(t-t\,')\). Substituting this latter in the above equations, we obtain

$$\begin{aligned} U_S(t)&\approx \int _{-\infty }^t U_0(t\,') \left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\Omega _f(t-t\,') - U_0(t)\nu _S(t)(t-t\,') + U_0(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}}\mathrm {d}t\,'\nonumber \\&=\int _{-\infty }^t U_0(t\,')\left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\Omega _u(t)(t-t\,')}\cdot \mathrm {e}^{U_0(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}}\mathrm {d}t\,'\nonumber \\&=\int _{-\infty }^t U_0(t\,')\left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\Omega _u(t)(t-t\,')}\left( 1+U_0(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}\right) \mathrm {d}t\,'\nonumber \\ X_S(t)&\approx \Omega _d \int _{-\infty }^t \mathrm {e}^{-\Omega _d (t-t\,') - U_S(t)\nu _S(t)(t-t\,') + U_S(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}}\mathrm {d}t\,'\nonumber \\&=\Omega _d \int _{-\infty }^t \mathrm {e}^{-\Omega _x(t)(t-t\,')}\cdot \mathrm {e}^{U_S(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}}\mathrm {d}t\,'\nonumber \\&=\Omega _d \int _{-\infty }^t \mathrm {e}^{-\Omega _x(t)(t-t\,')}\left( 1+U_S(t)\nu _S\,'(t)\frac{(t-t\,')^2}{2}\right) \mathrm {d}t\,'\nonumber \end{aligned}$$

where the rightmost terms in parentheses follow by first-order Taylor series expansion of the last exponential by the assumption of gradual rate changes such that \(\nu _S\,'/\nu _S \ll \nu _S\). The expressions for \(U_S(t)\) and \(X_S(t)\) obtained in this fashion coincide with those reported in Eqs. 10.15 and 10.16 and may then be used to study mean field synaptic transmission for different ranges of \(U_0(t)\) values. In particular, in the likely scenario of slowly decaying gliotransmitter modulation of synaptic release (Appendix 2), \(U_0(t)\) can be assumed almost constant during variations of \(\nu _S(t)\), i.e. \(U_0(t) \approx U_0 = \mathrm {const}\), so that

$$\begin{aligned} U_S(t) \approx U_0 \int _{-\infty }^t \left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\Omega _u(t)(t-t\,')}\left( 1+U_0\nu _S\,'(t)\frac{(t-t\,')^2}{2}\right) \mathrm {d}t\,' \end{aligned}$$
(10.60)

which, in the release-decreasing regime of gliotransmission such that \(0 < U_0 \ll 1\), provides

$$\begin{aligned} U_S(t)&\approx U_0 \int _{-\infty }^t \left( \Omega _f + \nu _S(t\,')\right) \,\mathrm {e}^{-\Omega _f (t-t\,')}\mathrm {d}t\,' = U_0 + U_0\int _{-\infty }^t \nu _S(t\,')\,\mathrm {e}^{-\Omega _f (t-t\,')}\mathrm {d}t\,'\nonumber \\&= U_0 + U_0\,\nu _S(t)*\mathrm {e}^{-\Omega _f\,t} \end{aligned}$$
(10.61)

in line with Eq. 10.21. In the case of \(X_S(t)\) instead, one may notice that the integral can be solved regardless of the functional form of \(\nu _S(t)\) and \(U_S(t)\), since the variable of integration is \(t\,'\) and not t, so that

$$\begin{aligned} X_S(t) = \frac{\Omega _d}{\Omega _x(t)} + \frac{\Omega _d U_S(t)\nu _S(t)}{\Omega _x^3(t)} \end{aligned}$$
(10.62)

which accounts for Eq. 10.19 in the main text.

1.2 Appendix 1.2 Validity of the Mean Field Description

The error introduced by the approximation of statistical independence between \(u_S\) and \(x_S\) in the derivation of Eqs. 10.34 and 10.35 may be estimated by the Cauchy–Schwarz inequality of probability theory whereby (Tsodyks et al. 1998):

$$\begin{aligned} \frac{\left| \langle \bar{u}_{S}\bar{x}_{S} \rangle -\langle \bar{u}_{S} \rangle \langle \bar{x}_{S} \rangle \right| }{\langle \bar{u}_{S} \rangle \langle \bar{x}_{S} \rangle } \le \chi _{u_S}\cdot \chi _{x_S} \end{aligned}$$
(10.63)

where \(\chi _{u_S}\) and \(\chi _{x_S}\) stand for the coefficients of variation of the random variables \(u_{S}\)\(x_{S}\) and, in the approximation of slow \(U_0(t)\) dynamics (i.e. \(\Omega _G \ll \Omega _d,\,\Omega _f\)), they are equal to (Tsodyks et al. 1998; De Pittà et al. 2011):

$$\begin{aligned} \chi _{u_S}^{2}&= \frac{\Omega _f (1-U_0)^2 \nu _S}{(\Omega _f + \nu _S)\left( 2\Omega _f + U_0(2-U_0)\nu _S\right) }\end{aligned}$$
(10.64)
$$\begin{aligned} \chi _{x_S}^{2}&= \frac{U_S^2\nu _S}{2\Omega _d + (2-U_S)U_S\nu _S} \end{aligned}$$
(10.65)

Only if \(\chi _{u_S}\chi _{x_S}<0.1\), and Eqs. 10.34 and 10.35 provide a realistic mean field description of synaptic dynamics (Tsodyks et al. 1998; Tsodyks 2005). In the simulations presented here, as well as for the majority of values of synaptic parameters within their estimated physiological range (Appendix 2), this constraint on the error is generally satisfied, resulting in an error that overall is less than 8%, thereby validating our mean field description of synaptic dynamics.

Analogous considerations can also be made for the derivation of Eq. 10.40. In that equation, the error introduced by the approximation of statistical independence between \(x_A\) (via \(G_A\)) and \(\Gamma _S\) is upper bounded by the Cauchy–Schwarz inequality

$$\begin{aligned} \frac{\langle x_A\,\Gamma _S \rangle -\langle x_A \rangle \langle \Gamma _S \rangle }{\langle x_A \rangle \langle \Gamma _S \rangle } \le \chi _{x_A}\cdot \chi _{\Gamma _S} \end{aligned}$$
(10.66)

where \(\chi _{x_A},\,\chi _{\Gamma _S}\) denote the coefficients of variation of \(x_A\) and \(\Gamma _S\) for stochastic gliotransmitter release. Derivation of \(\chi _{x_A}\) directly follows from the above formula for \(\chi _{x_S}^2\) replacing \(u_S,\,\Omega _d\), and \(\nu _S\) by \(U_A,\,\Omega _A\), and \(\nu _A\), thus providing

$$\begin{aligned} \chi _{x_A}^{2} = \frac{U_A^{2}\,\nu _A}{2\Omega _A + (2-U_A)U_A\,\nu _A} \end{aligned}$$
(10.67)

More involved is instead the estimation of \(\chi _{\Gamma _S}\). For this latter, we start from a recursive expression of the peak value of activated presynaptic receptors (\(\Gamma _{S_n}\)) as a function of the timing of gliotransmitter release (\(\tau _n\)). With this regard, the rate of GREs (\(\nu _A\)) can be assumed much lower than the recovery rate of released gliotransmitter resources, i.e. \(\nu _A\ll \Omega _A\) (Montana et al. 2006; Bowser and Khakh 2007), so that, at every release event it is \(r_{A_n}=U_{A}\,x_{A_n}\approx U_A\). In this fashion, each release event increases gliotransmitter concentration in the ECS by (Eq. 10.7):

$$\begin{aligned} G_{rel_n}=\rho _e G_T r_{A_n}\approx \rho _e G_T U_A = \hat{G}_A \end{aligned}$$
(10.68)

Hence, following the nth release event occurring at \(t=\tau _n\), the time course of gliotransmitter in the ECS is (Eq. 10.9):

$$\begin{aligned} G_{A}(t\ge \tau _n) = \hat{G}_A\,\mathrm {e}^{-\Omega _e\,t} \end{aligned}$$
(10.69)

Experimental evidence hints that onset of modulation of synaptic release by gliotransmitters and gliotransmitter clearance from the ECS is generally much faster than recovery of synaptic dynamics from gliotransmitter-mediated modulation, that is \(\Omega _G \ll \Omega _e,\,O_{G}G_A\) (Appendix 2). Therefore, it may be assumed that, between the onset of modulation of synaptic release by gliotransmitters (at \(t=\tau _n\)) and the peak of this modulation (at \(t=\hat{t}_n\)), the effect of modulation on synaptic release evolves according to Eq. 10.14 as:

$$\begin{aligned} \frac{\mathrm {d}\Gamma _S}{\mathrm {d}t}&\simeq O_G\,G_A \,(1-\Gamma _S)&\qquad \, \text {for}\,\tau _n\le t < \hat{t}_{n} \end{aligned}$$
(10.70)

where \(G_A\) is given by Eq. 10.69. Accordingly, the general solution of Eq. 10.70 reads:

$$\begin{aligned} \Gamma _S(t)&= 1+\left( \Gamma _S(\tau _n)-1\right) \beta ^{1-\mathrm {e}^{-\Omega _e t}}&\text {for}\,\tau _n\le t < \hat{t}_{n} \end{aligned}$$
(10.71)

with \(\beta = \exp (-J_S U_A)\), and asymptotically reaches a maximum value of \(\hat{\Gamma }_{S_n} =\Gamma _S(t\rightarrow \infty ) = 1 + \left( \Gamma _S(\tau _n)-1\right) \beta \).

Following fast gliotransmitter clearance from the extracellular space instead, the effect of modulation of synaptic release essentially decays from its peak value (at \(t=\hat{t}_n\)) at rate \(\Omega _G\) till the next event of gliotransmitter release from the astrocyte (at \(t=\tau _n + \Delta t = \tau _{n+1}\)). That is:

$$\begin{aligned} \frac{\mathrm {d}\Gamma _S}{\mathrm {d}t}&\simeq -\Omega _G\, \Gamma _S&\qquad \qquad \qquad \text {for}\,\hat{t}_n\le t < \tau _n + \Delta t \end{aligned}$$
(10.72)

so that

$$\begin{aligned} \Gamma _S(t)&= \Gamma _S(\hat{t}_n) \mathrm {e}^{-\Omega _G\,t}&\qquad \qquad \text {for}\,\hat{t}_n\le t < \tau _n + \Delta t \end{aligned}$$
(10.73)

Then, assuming that \(\Omega _e \gtrsim O_G\, G_A\), we can make the approximation that \(\Gamma _S(\hat{t}_n) \approx \hat{\Gamma }_{S_n}\). Furthermore, since \(\nu _A \ll \Omega _A \ll \Omega _e,\,O_G\, G_A\) (Appendix 2), we may assume that the quasi-totality of gliotransmitter released by the nth GRE is cleared from the ECS before the following release event, so that upon any GRE, \(\Gamma _S(\tau _n)\) in Eq. 10.71 is given by solution 10.73 for \(t\rightarrow \tau _n\). In this fashion, posing \(\Gamma _{S_n} \equiv \Gamma _S(\tau _n)\), we obtain the recursive expression

$$\begin{aligned} \Gamma _{S_{n+1}} \approx \hat{\Gamma }_{S_n} \mathrm {e}^{-\Omega _G\, \Delta t} \approx \left( 1 - \beta (1 - \Gamma _{S_n})\right) \mathrm {e}^{-\Omega _G t} \end{aligned}$$
(10.74)

In this fashion, in the hypothesis of steady-state gliotransmitter release (i.e. \(\Gamma _{S_{n+1}}=\Gamma _{S_n}\)), Eq. 10.74 can be used to estimate \(\langle \Gamma _S \rangle \) and \(\langle \Gamma _S^2 \rangle \) to eventually obtain an analytical expression for \(\chi _{\Gamma _S}\). With this purpose, it may be noted that the average value of the exponential decay factor in Eq. 10.74 is the integral over all positive \(\Delta t\) values of \(\mathrm {e}^{-\Omega _G\,\Delta t}\) multiplied by the probability density of GREs in the time interval \(\Delta t\). Under the assumption that such GREs are Poisson distributed (Skupin and Falcke 2010) and occur at an average frequency \(\nu _A\) (Eq. 10.36), the probability of an inter-event interval of duration \(\Delta t\) is then \(f(\Delta t) = \nu _A(\Delta t)\,\mathrm {e}^{-\nu _A(\Delta t)\,\Delta t}\); that is, \(\Delta t\) is exponentially distributed. Accordingly, denoting by \(\left( \mathcal {L}f\right) (s)\) the Laplace transform of \(f(\Delta t)\), the average exponential decay reads

$$\begin{aligned} \langle \mathrm {e}^{-\Omega _G\, \Delta t} \rangle = \int _{0}^{\infty } \mathrm {e}^{-\Omega _G\, \Delta t}f(\Delta t) = \left( \mathcal {L}f\right) (\Omega _G) \underset{\lim \xi \rightarrow 0}{\simeq } \frac{\nu _{A}}{\Omega _G + \nu _{A}} \end{aligned}$$
(10.75)

where, for simplicity of notation, we redefined \(\nu _A \leftarrow \nu _{A,0}\) (Eq. 10.36) in the last equality. Thus, at steady state and in the limit of \(\xi \rightarrow 0\) (i.e. homogeneous Poisson process at constant rate \(\nu _A\)), it follows that (Eq. 10.74):

$$\begin{aligned} \langle \Gamma _S \rangle&= \langle \Gamma _{S_{n+1}} \rangle = \langle \Gamma _{S_n} \rangle \nonumber \\&= \left( 1 - \beta (1 - \langle \Gamma _S \rangle )\right) \langle \mathrm {e}^{-\Omega _G\, \Delta t} \rangle \nonumber \\&\Rightarrow \langle \Gamma _S \rangle = \frac{(1-\beta )\nu _A}{\Omega _G + (1-\beta )\nu _A} \end{aligned}$$
(10.76)

In a similar fashion, averaging over the square of \(\Gamma _{S_n}\) given by Eq. 10.74 provides \(\langle \Gamma _S^{2} \rangle \), which reads

$$\begin{aligned} \langle \Gamma _S^2 \rangle&= \langle \Gamma _{S_{n+1}}^2 \rangle = \langle \Gamma _{S_{n}}^2 \rangle \nonumber \\&= \left( \left( 1-\beta \right) ^2 + \beta ^2 \Gamma _S^2 + 2\beta (1-\beta ) \langle \Gamma _S \rangle \right) \langle \mathrm {e}^{-2\Omega _G t} \rangle \nonumber \\&\Rightarrow \langle \Gamma _S^2 \rangle = \frac{(1-\beta )^2\left( \Omega _G + (1+\beta )\nu _A\right) \nu _A}{\left( \Omega _G + (1-\beta )\nu _A\right) \left( 2\Omega _G + (1-\beta ^2)\nu _A\right) } \end{aligned}$$
(10.77)

Accordingly, the coefficient of variation of \(\Gamma _S\) (\(\chi _{\Gamma _S}\)) satisfies the equation:

$$\begin{aligned} \chi _{\Gamma _S}^{2} = \frac{\langle \Gamma _S^2 \rangle -\langle \Gamma _S \rangle ^2}{\langle \Gamma _S \rangle ^2} = \frac{\Omega _G^2}{\left( \Omega _G + (1-\beta )\nu _A\right) \left( \Omega _G + (1+\beta )\nu _A\right) } \end{aligned}$$
(10.78)

Comparison of Eq. 10.76 with Eq. 10.49 shows that the error introduced by the above rationale in the computation of \(\chi _{\Gamma _S}\) roughly reaches \(\sim \)10% within the frequency range of \({\text {Ca}}^{2+}\) oscillations \(\nu _A=0.01-1\,{\text {Hz}}\) considered in this chapter (Fig. 10.9). Therefore, Eq. 10.78 can be taken as an acceptable estimation of the \(\chi _{\Gamma _S}\) and be used in the evaluation of the upper boundary of the error introduced by the mean field description (Eq. 10.66). Computation of this boundary for different values of gliotransmission parameters across their estimated physiological range reveals that this boundary is generally <7%, implying that our description of mean field gliotransmission is generally realistic and introduces a negligible error.

Fig. 10.9
figure 9

a Approximation of \(\langle \Gamma _{S_n} \rangle \). Comparison between exact steady state, mean field solution of \(\langle \Gamma _S \rangle \) (Eq. 10.40, red curve), and the approximated solution in Eq. 10.76 (gray curve). b Percentage error of the approximating solution with respect to the exact mean field solution. Model parameters as in Table 10.1

Appendix 2 Parameter Estimation

An in-depth estimation of parameters of gliotransmitter-regulated synapses was produced by De Pittà and Brunel (2016), and the reader is referred to that study for details on the derivation of most of the parameter ranges reported in Table 10.1. In addition, we consider new estimations on rise (\(\tau _r\)) and decay time constants (\(\tau _d\)) of gliotransmitter modulation of synaptic release, that can be obtained by manual fitting of experimental data by difference of exponentials

$$\begin{aligned} y(t) = C\left( \mathrm {e}^{-\frac{t}{\tau _d}}-\mathrm {e}^{-\frac{t}{\tau _r}}\right) \end{aligned}$$
(10.79)

where C is a normalization factor equal to

$$\begin{aligned} C = \left( \left( \frac{\tau _r}{\tau _d}\right) ^{\frac{\tau _x}{\tau _d}}-\left( \frac{\tau _r}{\tau _d}\right) ^{\frac{\tau _x}{\tau _r}}\right) ^{-1} \end{aligned}$$
(10.80)

with \(\tau _x = \tau _r\tau _d/(\tau _d - \tau _r)\). Limiting our analysis, for simplicity, to release-increasing effects of glutamatergic gliotransmission, both of short- (Covelo and Araque 2018) and long-term nature (Perea and Araque 2007), and short-term release-decreasing effect mediated by purinergic gliotransmission (Covelo and Araque 2018), we obtain: for glutamatergic gliotransmission \(\tau _r>0.05-0.2\,{\text {s}}, \, \tau _d=5.9-6.7\,{\text {s}}\) (\(n=2\), short-term); \(\tau _r=6.2-28.3\,{\text {s}}, \, \tau _d=18.7-95.7\,{\text {s}}\) (\(n=3\), long-term); and for purinergic gliotransmission (\(n=2\)): \(\tau _r=1.6-8.2\,{\text {s}}, \, \tau _d=8.2-12.0\,{\text {s}}\). These values may be translated into equivalent ranges for \(O_G\) and \(\Omega _G\) considering \(O_G G_A \approx 1/\tau _r\) and \(\Omega _G \approx 1/\tau _d\), whereby for an average gliotransmitter concentration in the ECS of 100–300 \(\upmu {\textsc {m}}\), we get \(O_G=1.2\times 10^{-4}-0.2\,\upmu {\textsc {m}}^{-1}{\text {s}}^{-1}\) and \(\Omega _G=0.01-0.17\,{\text {s}}^{-1}\).

Concerning gliotransmitter uptake, because the inclusion of \(J_u\) (Eq. 10.10) in the time course of gliotransmitter in the ECS was only marginally considered in this study, mostly for the sake of completeness, we provide here only estimates for glutamate uptake by astrocytic EAATs, leaving more detailed investigations on the effect of gliotransmitter uptake on functional gliotransmission to future studies. In this spirit, the kinetic of glutamate (Glu) uptake by astrocytic transporters (T) may be approximated by the Michaelis–Menten reaction

$$\begin{aligned} {\text {Glu}}_e + {\text {T}} \mathop {\rightleftharpoons }^{O_b}_{\Omega _b} {\text {Glu}}-{\text {T}} \mathop {\longrightarrow }^{\Omega _t} {\text {Glu}}_i + {\text {T}} \end{aligned}$$
(10.81)

where \(O_b=10^{4}\,{\textsc {m}}^{-1} {\text {ms}}^{-1}\), \(\Omega _b=0.2\,{\text {ms}}^{-1}\), and \(\Omega _t = 0.1\,{\text {ms}}^{-1}\) (Rusakov 2001). In this fashion \(K_u=(\Omega _b + \Omega _t)/O_b = 30\,\upmu {\textsc {m}}\) which is in agreement with independent estimates of EAAT binding affinity in the range of \(\sim \)10–20 \(\upmu {\textsc {m}}\) (Tzingounis and Wadiche 2007). More problematic is instead the estimation of the maximal rate of glutamate uptake \(O_u\) which depends on the expression of available transporters. With this regard, reported values of transporter concentration in the perisynaptic volume occupied by astrocytic transporters are comprised in a wide range of values, i.e. \([T]_{0} =\) 30–1300 \(\upmu {\textsc {m}}\), depending on how this volume is defined (Lehre and Danbolt 1998). These values were, however, estimated assuming uniform transporter distribution, which is likely not the case at perisynaptic astrocytic processes, where transporters are known to cluster in proximity of synaptic interface, and be instead poorly expressed away from it (Danbolt et al. 2002). Consequently, because gliotransmitter release sites are located away from synaptic interfaces as they rather face extrasynaptic targets (Jourdain et al. 2007), it is plausible to consider smaller values for \([T]_0\). In this fashion, it follows that \(O_u=\Omega _t \cdot [T]_0 < 3\,{\text {m}}{\textsc {m}}{\text {s}}^{-1}\).

Appendix 3 Software

The Python file used to generate the figures of this chapter can be downloaded from the online book repository at https://github.com/mdepitta/comp-glia-book/tree/master/Ch10.DePitta. The software for this chapter is organized in two folders. The folder contains experimental data from Perea and Araque (2007) and Covelo and Araque (2018) used for parameter estimations in Appendix 2. Experimental data from those studies were extracted by WebPlotDigitizer 4.0 (https://automeris.io/WebPlotDigitizer). The same folder also contains the Jupyter notebook used to fit those data by Eq. 10.79.

The folder contains instead all the routines (including ) used for the simulations of this chapter. The files contain the classes that implement spiking and mean field models for gliotransmitter-regulated synapses introduced here. The core model is implemented in C/C++11 ( and files), whereas the file provides a user-friendly Python interface for simulations.

Numerical solutions of the spiking model were computed by a hybrid integration scheme that combined an event-based strategy to compute exact solutions of synaptic variables (\(u_S,\,x_S,\,r_S\), and I) and releasable gliotransmitter resources (\(x_A\)), with a backward Gaussian second-order Runge–Kutta integration scheme for \(G_A\) and \(\Gamma _S\). Integration of the stochastic Li–Rinzel model in Figs. 10.2b and 10.3 was performed by a Milstein integration scheme for Stratonovich formulation of multiplicative noise (Milshtejn 1975). On the contrary, numerical solutions of mean field model in Fig. 10.6 were computed by an implicit Bulirsch–Stoer method suitable for stiff problems like ours, for the existence of largely separated timescales between synaptic dynamics and gliotransmitter-mediated modulations.

Appendix 4 Model Parameters Used in Simulations

Parameter of the stochastic Li–Rinzel model used to simulate astrocytic calcium dynamics in Figs. 10.2 and 10.3 is as following (see also Chap. 4): \(d_1=0.1\,\upmu {\textsc {m}}\), \(O_2=0.4\,\upmu {\textsc {m}}^{-1}{\text {s}}^{-1}\), \(d_2=2.1\,\upmu {\textsc {m}}\), \(d_3=0.9967\,\upmu {\textsc {m}}\), \(d_5=0.2\,\upmu {\textsc {m}}\), \(C_T=4\,\upmu {\textsc {m}}\), \(\rho _A=0.4\), \(\Omega _C=7\,{\text {s}}^{-1}\), \(\Omega _L=0.05\,{\text {s}}^{-1}\), \(O_P=0.1\,\upmu {\textsc {m}}{\text {s}}^{-1}\), \(K_P=0.1\,\upmu {\textsc {m}}\). To induce oscillations, we set intracellular \({\text {IP}}_{3}\) at \(0.4\,\upmu {\textsc {m}}\) starting from initial conditions \(C(0)=0.05\,\,\upmu {\textsc {m}}\) and \(h(0)=0.9\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Pittà, M. (2019). Gliotransmitter Exocytosis and Its Consequences on Synaptic Transmission. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_10

Download citation

Publish with us

Policies and ethics