Skip to main content

Automatic Design of Communication-Based Behaviors for Robot Swarms

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

We introduce Gianduja, an automatic design method that generates communication-based behaviors for robot swarms. Gianduja extends Chocolate, a previously published design method. It does so by providing the robots with the capability to communicate using one message. The semantics of the message is not a priori fixed. It is the automatic design process that implicitly defines it, on a per-mission basis, by prescribing the conditions under which the message is sent by a robot and how the receiving peers react to it. We empirically study Gianduja on three missions and we compare it with the aforementioned Chocolate and with EvoCom, a rather standard evolutionary robotics method that generates communication-based behaviors. We evaluate the behaviors produced by the three automatic design methods on a swarm of 20 e-puck robots. The results show that Gianduja uses communication meaningfully and effectively in all the three missions considered. The aggregate results indicate that, on the three missions considered, Gianduja performs significantly better than the two other methods under analysis.

The proposed method was implemented and tested by KH. The experiments were designed by the three authors. This paper was drafted by KH, refined by MB, and revised by the three authors. The research was conceived and directed by MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolution of signaling in a multi-robot system: categorization and communication. Adapt. Behav. 16(1), 5–26 (2008)

    Article  Google Scholar 

  2. Balch, T.: Communication, diversity and learning: cornerstones of swarm behavior. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_3

    Chapter  Google Scholar 

  3. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Auton. Robot. 1(1), 27–52 (1994)

    Article  Google Scholar 

  4. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: Zexiang, L. (ed.) IEEE International Conference Robotics and Automation, ICRA, pp. 378–385. IEEE Press, Piscataway (2011)

    Google Scholar 

  5. Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects of overdesign in the automatic design of control software for robot swarms. In: Dorigo, M. (ed.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_13

    Chapter  Google Scholar 

  6. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software engineering for the development of automatic design methods. In: ACM/IEEE 1st International Workshop on Robotics Software Engineering. RoSE, pp. 33–35. ACM, New York (2018)

    Google Scholar 

  7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for swarm robotics: a design method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1–17.28 (2015)

    Google Scholar 

  8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  9. Cao, Y., Fukunaga, A., Kahng, A., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 226–234. IEEE Press, Piscataway (1997)

    Google Scholar 

  10. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  11. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  12. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Handbook of Robotics, pp. 1423–1451 (2008)

    Chapter  Google Scholar 

  13. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17(6), 514–519 (2007)

    Article  Google Scholar 

  14. Fong, T., Nourbakhsh, I.: Socially interactive robots. Robot. Auton. Syst. 42(3–4), 139–141 (2009)

    MATH  Google Scholar 

  15. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3(29), 1–9 (2016)

    Google Scholar 

  16. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

    Article  Google Scholar 

  17. Francesca, G., et al.: An experiment in automatic design of robot swarms. In: Dorigo, M. (ed.) ANTS 2014. LNCS, vol. 8667, pp. 25–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1_3

    Chapter  Google Scholar 

  18. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  19. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an evolved robotic behaviour using a biological model of collegial decision making. In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol. 7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33093-3_38

    Chapter  Google Scholar 

  20. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium (2015)

    Google Scholar 

  21. Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, Hoboken (2016)

    Google Scholar 

  22. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

    Article  Google Scholar 

  23. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open e-puck range & bearing miniaturized board for local communication in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference on Robotics and Automation, ICRA, pp. 3111–3116. IEEE Press, Piscataway (2009)

    Google Scholar 

  24. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2), 209–239 (2008)

    Article  Google Scholar 

  25. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for AutoMoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium (2018)

    Google Scholar 

  26. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-based behaviors for robot swarms: supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2018-003/ (2018)

  27. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  28. Jones, C., Mataric, M.J.: Automatic synthesis of communication-based coordinated multi-robot systems. In: International Conference on Intelligent Robots and Systems, IROS, vol. 1, pp. 381–387. IEEE Press, Piscataway (2004)

    Google Scholar 

  29. Kazadi, S., Lee, J.R., Lee, J.: Model independence in swarm robotics. Int. J. Intell. Comput. Cybern. 2(4), 672–694 (2009)

    Article  MathSciNet  Google Scholar 

  30. König, L., Mostaghim, S.: Decentralized evolution of robotic behavior using finite state machines. Int. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

    Article  MathSciNet  Google Scholar 

  31. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)

    Article  Google Scholar 

  32. Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., Birattari, M.: AutoMoDe, NEAT, and EvoStick: implementations for the e-puck robot in ARGoS3. Technical report TR/IRIDIA/2017-002, IRIDIA, Université libre de Bruxelles, Belgium (2017)

    Google Scholar 

  33. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with simulation only experiments. In: Dorigo, M. (ed.) ANTS 2018. LNCS, vol. 11172, pp. 109–122. Springer, Berlin (2018)

    Google Scholar 

  34. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory control theory applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016)

    Article  Google Scholar 

  35. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  36. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de Castelo Branco, Castelo Branco (2009)

    Google Scholar 

  37. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  38. Nolfi, S., Floreano, D., Miglino, G., Mondada, F.: How to evolve autonomous robots: different approaches in evolutionary robotics. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV: Proceedings of the Workshop on the Synthesis and Simulation of Living Systems. pp. 190–197. MIT Press, Cambridge (1994)

    Google Scholar 

  39. Nolfi, S.: Emergence of communication in embodied agents: co-adapting communicative and non-communicative behaviours. Connect. Sci. 17(3–4), 231–248 (2005)

    Article  Google Scholar 

  40. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  41. Quinn, M.: Evolving communication without dedicated communication channels. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 357–366. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_38

    Chapter  Google Scholar 

  42. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 361(1811), 2321–2343 (2003)

    Article  MathSciNet  Google Scholar 

  43. Reina, A., Valentini, G., Fernàndez-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

    Article  Google Scholar 

  44. Silva, F., Duarte, M., Correia, L., Oliveira, S., Christensen, A.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  45. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for decentralised online evolution of robotic controllers. Evol. Comput. 23(3), 421–449 (2015)

    Article  Google Scholar 

  46. Spears, W.M., Spears, D., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robot. 17, 137–162 (2004)

    Article  Google Scholar 

  47. Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin (2008)

    Book  Google Scholar 

  48. Trianni, V.: Evolutionary robotics: model or design? Front. Robot. AI 1(13), 1–6 (2014)

    Google Scholar 

  49. Tuci, E.: An investigation of the evolutionary origin of reciprocal communication using simulated autonomous agents. Biol. Cybern. 101(3), 183–199 (2009)

    Article  Google Scholar 

  50. Urzelai, J., Floreano, D.: Evolutionary robotics: coping with environmental change. In: Whitney, L.D., et al. (eds.) Proceedings of Conference on the Genetic and Evolutionary Computation Conference, GECCO, pp. 941–948. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  51. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Birattari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasselmann, K., Robert, F., Birattari, M. (2018). Automatic Design of Communication-Based Behaviors for Robot Swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics