Skip to main content

Impact of Proinflammatory Cytokines on Adipocyte Insulin Signaling

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue

Abstract

Obesity is associated with a chronic low-grade inflammatory state. Inflammatory cytokines that are produced in adipose tissue during obesity are involved in the development of an insulin resistant state and they participate in the development of type 2 diabetes and other metabolic complications of obesity. In this chapter, we will describe the network of signaling proteins which are used by the inflammatory cytokines to decrease insulin signaling and action. We will discuss the possibility to inhibit this network as new avenues for the treatment of insulin resistance and other metabolic complications of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arkan MC, Hevener AL, Greten FR et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198

    Article  PubMed  CAS  Google Scholar 

  • Bashan N, Dorfman K, Tarnovscki T et al (2007) Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology 148:2955–2962

    Article  PubMed  CAS  Google Scholar 

  • Bost F, Aouadi M, Caron L et al (2005) The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54:402–411

    Article  PubMed  CAS  Google Scholar 

  • Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    Article  PubMed  CAS  Google Scholar 

  • Chiang SH, Bazuine M, Lumeng CN et al (2009) The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138:961–975

    Article  PubMed  CAS  Google Scholar 

  • de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105

    Article  PubMed  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  PubMed  CAS  Google Scholar 

  • Emanuelli B, Macotela Y, Boucher J, Ronald Kahn C (2008a) SOCS-1 deficiency does not prevent diet-induced insulin resistance. Biochem Biophys Res Commun 377:447–452

    Article  PubMed  CAS  Google Scholar 

  • Emanuelli B, Eberle D, Suzuki R, Kahn CR (2008b) Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A 105:3545–3550

    Article  PubMed  CAS  Google Scholar 

  • Gantke T, Sriskantharajah S, Ley SC (2011) Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase. Cell Res Dec 7 [Epub ahead of print]: 1–15

    Google Scholar 

  • Goldfine AB, Fonseca V, Shoelson SE (2011) Therapeutic approaches to target inflammation in type 2 diabetes. Clin Chem 57:162–167

    Article  PubMed  CAS  Google Scholar 

  • Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  CAS  Google Scholar 

  • Howard JK, Cave BJ, Oksanen LJ et al (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10:734–738

    Article  PubMed  CAS  Google Scholar 

  • Hull-Thompson J, Muffat J, Sanchez D et al (2009) Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 5:e1000460

    Article  PubMed  Google Scholar 

  • Jaeschke A, Czech MP, Davis RJ (2004) An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev 18:1976–1980

    Article  PubMed  CAS  Google Scholar 

  • Jager J, Gremeaux T, Cormont M et al (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148:241–251

    Article  PubMed  CAS  Google Scholar 

  • Jager J, Gremeaux T, Gonzalez T et al (2010) The Tpl2 kinase is up-regulated in adipose tissue in obesity and may mediate IL-1{beta} and TNF-{alpha} effects on ERK activation and lipolysis. Diabetes 59:61–70

    Article  PubMed  CAS  Google Scholar 

  • Jager J, Corcelle V, Gremeaux T et al (2011) Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54:180–189

    Article  PubMed  CAS  Google Scholar 

  • Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 661:3–38

    Article  PubMed  CAS  Google Scholar 

  • Langlais P, Yi Z, Finlayson J et al (2011) Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54:2878–2889

    Article  PubMed  CAS  Google Scholar 

  • Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 192:29–36

    Article  CAS  Google Scholar 

  • Lebrun P, Cognard E, Bellon-Paul R et al (2009) Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice. Diabetologia 52:2201–2212

    Article  PubMed  CAS  Google Scholar 

  • Lee DF, Kuo HP, Chen CT et al (2008) IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22:633–638

    PubMed  CAS  Google Scholar 

  • Lee SJ, Pfluger PT, Kim JY et al (2010) A functional role for the p62-ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Rep 11:226–232

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Collins QF, Xiong Y et al (2007) Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J Biol Chem 282:14205–14212

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Hanada R, Hanada T et al (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743

    Article  PubMed  CAS  Google Scholar 

  • Morino K, Neschen S, Bilz S et al (2008) Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57:2644–2651

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Kaneto H, Kawamori D et al (2004) Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 279:45803–45809

    Article  PubMed  CAS  Google Scholar 

  • Ovadia H, Haim Y, Nov O et al (2011) Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J Biol Chem 286:30433–30443

    Article  PubMed  CAS  Google Scholar 

  • Pende M, Kozma SC, Jaquet M et al (2000) Hypoinsulinaemia, glucose intolerance and diminished ß-cell size in S6K1-deficient mice. Nature 408:994–997

    Article  PubMed  CAS  Google Scholar 

  • Perfield JW 2nd, Lee Y, Shulman GI et al (2011) Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes 60:1168–1176

    Article  PubMed  CAS  Google Scholar 

  • Polak P, Cybulski N, Feige JN et al (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8:399–410

    Article  PubMed  CAS  Google Scholar 

  • Rieusset J, Bouzakri K, Chevillotte E et al (2004) Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53:2232–2241

    Article  PubMed  CAS  Google Scholar 

  • Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496

    Article  PubMed  CAS  Google Scholar 

  • Sachithanandan N, Graham KL, Galic S et al (2011) Macrophage deletion of SOCS1 increases sensitivity to LPS and palmitic acid and results in systemic inflammation and hepatic insulin resistance. Diabetes 60:2023–2031

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Cave B, Inouye K et al (2006) Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55:699–707

    Article  PubMed  CAS  Google Scholar 

  • Solinas G, Vilcu C, Neels JG et al (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–397

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  • Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9:753–762

    Article  PubMed  CAS  Google Scholar 

  • Tanti JF, Gremeaux T, van Obberghen E, Le Marchand-Brustel Y (1994) Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  CAS  Google Scholar 

  • Torisu T, Sato N, Yoshiga D et al (2007) The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes Cells 12:143–154

    Article  PubMed  CAS  Google Scholar 

  • Ueki K, Kadowaki T, Kahn CR (2005) Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 33:185–192

    Article  PubMed  CAS  Google Scholar 

  • Vallerie SN, Furuhashi M, Fucho R, Hotamisligil GS (2008) A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity. PLoS One 3:e3151

    Article  PubMed  Google Scholar 

  • Waeber G, Delplanque J, Bonny C et al (2000) The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet 24:291–295

    Article  PubMed  CAS  Google Scholar 

  • White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422

    PubMed  CAS  Google Scholar 

  • Yang R, Trevillyan JM (2008) c-Jun N-terminal kinase pathways in diabetes. Int J Biochem Cell Biol 40:2702–2706

    Article  PubMed  CAS  Google Scholar 

  • Zabolotny JM, Kim YB, Welsh LA et al (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang G, Zhang H et al (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xu A, Chung SK et al (2011) Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60:486–495

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Tanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Tanti, JF., Jager, J., Le Marchand-Brustel, Y. (2013). Impact of Proinflammatory Cytokines on Adipocyte Insulin Signaling. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_21

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics