Skip to main content
  • 883 Accesses

Résumé

À partir d’extraits d’estomac bovin, Tatemoto et son équipe ont purifié en 1998 une protéine capable de se lier à un récepteur orphelin appelé APJ [1]. Le gène ainsi identifié code un polypeptide de 77 acides aminés comprenant une séquence signal permettant sa sécrétion. Étant le ligand du récepteur APJ via sa partie COOH-terminale, il a été nommé «apelin» pour APJ Endogenous Ligand [1]. Le récepteur APJ est un récepteur à sept domaines transmembranaires identifié chez l’homme en 1993 grâce à sa forte homologie avec le récepteur de type 1 de l’angiotensine II [2]. Le gène codant APJ est localisé sur le chromosome 11 en position 11q2. Ses transcrits ont été détectés en premier lieu dans différentes régions du cerveau mais APJ est présent dans de nombreux autres tissus [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Tatemoto K, Hosoya M, Habata Y et al. (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251: 471–76

    Article  PubMed  CAS  Google Scholar 

  2. O’Dowd BF, Heiber M, Chan A et al. (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136: 355–60

    Article  CAS  Google Scholar 

  3. Medhurst AD, Jennings CA, Robbins MJ et al. (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84: 1162–72

    Article  PubMed  CAS  Google Scholar 

  4. Lee DK, Cheng R, Nguyen T et al. (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74: 34–41

    Article  PubMed  CAS  Google Scholar 

  5. Lee DK, Saldivia VR, Nguyen T et al. (2005) Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology 146: 231–36

    Article  PubMed  CAS  Google Scholar 

  6. Kawamata Y, Habata Y, Fukusumi S et al. (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538: 162–71

    Article  PubMed  CAS  Google Scholar 

  7. De Mota N, Reaux-Le Goazigo A, El Messari S et al. (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release.Proc Natl Acad Sci États-Unis 101: 10464–69

    Article  Google Scholar 

  8. Maguire JJ, Kleinz MJ, Pitkin SL Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease.Hypertension 54: 598–604

    Article  PubMed  CAS  Google Scholar 

  9. Tatemoto K, Takayama K, Zou MX et al. (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99 (2–3): 87–92

    Article  PubMed  CAS  Google Scholar 

  10. Boucher J, Masri B, Daviaud D et al. (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146: 1764–71

    Article  PubMed  CAS  Google Scholar 

  11. Hung WW, Hsieh TJ, Lin T et al. (2011) Blockade of the renin-angiotensin system ameliorates apelin production in 3T3-L1 adipocytes. Cardiovasc Drugs Ther 25: 3–12

    Article  PubMed  CAS  Google Scholar 

  12. Daviaud D, Boucher J, Gesta S et al. (2006) TNFalpha up-regulates apelin expression in human and mouse adipose tissue. FASEB J 20: 1528–30

    Article  PubMed  CAS  Google Scholar 

  13. Geurts L, Lazarevic V, Derrien M et al. (2011) Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2: 149

    PubMed  CAS  Google Scholar 

  14. Geiger K, Muendlein A, Stark N et al. (2011) Hypoxia induces apelin expression in human adipocytes. Horm Metab Res 43: 380–85

    Article  PubMed  CAS  Google Scholar 

  15. Glassford AJ, Yue P, Sheikh AY (2007) HIF-1 regulates hypoxia-and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293: E1590–96

    Article  PubMed  CAS  Google Scholar 

  16. Kunduzova O, Alet N, Delesque-Touchard N, (2008) Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22: 4146–53

    Article  PubMed  CAS  Google Scholar 

  17. Mazzucotelli A, Ribet C, Castan-Laurell I (2008) The transcriptional co-activator PGC-1alpha up regulates apelin in human and mouse adipocytes. Regul Pept 150: 33–37

    Article  PubMed  CAS  Google Scholar 

  18. Lorente-Cebrian S, Bustos M, Marti A (2010) Eicosapentaenoic acid up-regulates apelin secretion and gene expression in 3T3-L1 adipocytes. Mol Nutr Food Res 54: Suppl 1, S104–11

    Article  Google Scholar 

  19. Perez-Echarri N, Perez-Matute P, Marcos-Gomez B (2009) Effects of eicosapentaenoic acid ethyl ester on visfatin and apelin in lean and overweight (cafeteria diet-fed) rats. Br J Nutr 101: 1059–67

    Article  PubMed  CAS  Google Scholar 

  20. Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 132: 27–32

    Article  PubMed  CAS  Google Scholar 

  21. Reaux A, De Mota N, Skultetyova I et al. (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77: 1085–96

    Article  PubMed  CAS  Google Scholar 

  22. Reaux-Le Goazigo A, Bodineau L, Picco-DE Mota N et al. (2011) Apelin and proopiomelanocortin system: a new regulatory pathway of hypothalamic alpha-MSH release. Am J Physiol Endocrinol Metab (in press)

    Google Scholar 

  23. Castan-Laurell I, Dray C, Attané C et al. (2011) Apelin, diabetes and obesity. Endocrine 40(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  24. Clarke KJ, Whitaker KW, Reyes TM (2009) Diminished metabolic responses to centrallyadministered apelin-13 in diet-induced obese rats fed a high-fat diet. J Neuroendocrinol 21: 83–9

    Article  PubMed  CAS  Google Scholar 

  25. Valle A, Hoggard N, Adams AC et al. (2008) Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J Neuroendocrinol 20: 79–84

    PubMed  CAS  Google Scholar 

  26. Erdem G, Dogru T, Tasci I et al. (2008) Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 116: 289–92

    Article  PubMed  CAS  Google Scholar 

  27. Kadoglou NP, Tsanikidis H, Kapelouzou A et al. (2010) Effects of rosiglitazone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with type 2 diabetes mellitus. Metabolism 59: 373–79

    Article  PubMed  CAS  Google Scholar 

  28. Telejko B, Kuzmicki M, Wawrusiewicz-Kurylonek N et al. (2010) Plasma apelin levels and apelin/APJ mRNA expression in patients with gestational diabetes mellitus. Diabetes Res Clin Pract 87: 176–83

    Article  PubMed  CAS  Google Scholar 

  29. Aydin S (2010) The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 31: 2236–40

    Article  PubMed  CAS  Google Scholar 

  30. Tapan S, Tascilar E, Abaci A et al. (2010) Decreased plasma apelin levels in pubertal obese children. J Pediatr Endocrinol Metab 23: 1039–46

    Article  PubMed  CAS  Google Scholar 

  31. Ziora K, Oswiecimska J, Swietochowska E et al. (2010) Assessment of serum apelin levels in girls with anorexia nervosa. J Clin Endocrinol Metab 95: 2935–41

    Article  PubMed  CAS  Google Scholar 

  32. Reinehr T, Woelfle J, Roth CL (2011) Lack of association between apelin, insulin resistance, cardiovascular risk factors, and obesity in children: a longitudinal analysis. Metabolism 60(9):1349–54

    Article  PubMed  CAS  Google Scholar 

  33. Meral C, Tascilar E, Karademir F et al. (2010) Elevated plasma levels of apelin in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 23: 497–502

    Article  PubMed  CAS  Google Scholar 

  34. Castan-Laurell I, Vitkova M, Daviaud D et al. (2008) Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol 158: 905–10

    Article  PubMed  CAS  Google Scholar 

  35. Heinonen MV, Laaksonen DE, Karhu T et al. (2009) Effect of diet-induced weight loss on plasma apelin and cytokine levels in individuals with the metabolic syndrome. Nutr Metab Cardiovasc Dis 19: 626–33

    Article  PubMed  CAS  Google Scholar 

  36. Soriguer F, Garrido-Sanchez L, Garcia-Serrano S et al. (2009) Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obes Surg. 19: 1574–80

    Article  PubMed  Google Scholar 

  37. Ercin CN, Dogru T, Tapan S et al. (2010) Plasma apelin levels in subjects with nonalcoholic fatty liver disease. Metabolism 59: 977–81

    Article  PubMed  CAS  Google Scholar 

  38. Dray C, Debard C, Jager J et al. (2010) Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans.Am J Physiol Endocrinol Metab 298: E1161–69

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Y, Shen C, Li X et al. (2009) Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin Med J. 122: 1273–76

    PubMed  CAS  Google Scholar 

  40. Liao YC, Chou WW, Li YN et al. (2011) Apelin gene polymorphism influences apelin expression and obesity phenotypes in Chinese women. Am J Clin Nutr 94(3):921–8

    Article  PubMed  CAS  Google Scholar 

  41. Dray C, Knauf C, Daviaud D et al. (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8: 437–45

    Article  PubMed  CAS  Google Scholar 

  42. Yue P, Jin H, Aillaud M et al. (2010) Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab 298: E59–67

    Article  PubMed  CAS  Google Scholar 

  43. Duparc T, Colom A, Cani PD et al. (2011) Central Apelin Controls Glucose Homeostasis via a Nitric Oxide-Dependent Pathway in Mice. Antioxid Redox 15(6):1477–96.

    Article  CAS  Google Scholar 

  44. Zhu S, Sun F, Li W et al. (2011) Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 353: 305–13

    Article  PubMed  CAS  Google Scholar 

  45. Attané C, Daviaud D, Dray C et al. (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46: 21–8

    Article  PubMed  Google Scholar 

  46. Higuchi, K., Masaki, T., Gotoh, K et al. (2007) Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148: 2690–97

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto T, Habata Y, Matsumoto Y et al. (2011) Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta 1810(9): 853–62

    Article  PubMed  CAS  Google Scholar 

  48. Yue P, Jin H, Xu S et al. (2011) Apelin decreases lipolysis via G(q), G(i), and AMPK-Dependent Mechanisms. Endocrinology 152: 59–68

    Article  PubMed  CAS  Google Scholar 

  49. Frier BC, Williams DB, Wright DC (2009) The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol 297: R1761–68

    Article  Google Scholar 

  50. Attané C, Foussal C, Le Gonidec S et al. (2012) Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity and biogenesis in muscle of insulin-resistant mice. Diabetes 61: 310–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valet .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Castan-Laurell, I., Dray, C., Knauf, C., Valet, P. (2013). Fonctions métaboliques de l’apeline. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_14

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics