Skip to main content

Traitements antiangiogéniques dans le cancer du poumon

  • Chapter
Thérapeutiques antiangiogéniques en cancérologie

Part of the book series: Oncologie pratique ((ONCOLPRAT))

  • 270 Accesses

Abstrait

Aujourďhui le cancer du poumon est la cause la plus importante de mortalité par cancer chez ľhomme en Europe (28 000 décès annuels en France) et en Amérique du Nord (1). Il est généralement diagnostiqué après de longues années ďexposition à des facteurs carcinogènes, au premier rang desquels se trouve le tabac. Ainsi en dépit de campagnes intensives de lutte contre le tabagisme, ses effets dévastateurs vont continuer ďaugmenter dans les quinze prochaines années (notamment du fait de ľaugmentation du tabagisme féminin) (2). Par ailleurs la majorité des patients n’est pas éligible pour une chirurgie lors du diagnostic (3) et les traitements conventionnels par chimiothérapie n’ont guère amélioré leur survie ces 25 dernières années (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Alberg AJ, Samet JM (2003) Epidemiology of lung cancer. Chest 123: 21S–49S

    Article  PubMed  Google Scholar 

  2. Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23: 3175–85

    Article  PubMed  Google Scholar 

  3. Shepherd FA (2005) A targeted approach to reducing lung cancer mortality. J Clin Oncol 23: 3173–4

    Article  PubMed  Google Scholar 

  4. Schiller JH, Harrington D, Belani CP et al. (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346: 92–8

    Article  PubMed  CAS  Google Scholar 

  5. Hyde L, Hyde CI (1974) Clinical manifestations of lung cancer. Chest 65: 299–306

    PubMed  CAS  Google Scholar 

  6. Vaportciyan A., Nesbitt J, Lee J (2000) Cancer of the lung. In: Holland JF, Frei E (eds) Cancer Medicine, 5th ed. BC Decker, London

    Google Scholar 

  7. Ushijima C, Tsukamoto S, Yamazaki K et al. (2001) High vascularity in the peripheral region of non-small cell lung cancer tissue is associated with tumor progression. Lung Cancer 34: 233–41

    Article  PubMed  CAS  Google Scholar 

  8. Meert AP, Paesmans M, Martin B et al. (2002) The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 87: 694–701

    Article  PubMed  Google Scholar 

  9. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–86.

    PubMed  CAS  Google Scholar 

  10. Machet M, De Muret A (1999) Anatomopathologie des cancers bronchiques. Nouvelle classification OMS. In: Oncology Thoracique. La Simarre. Tour, 1999

    Google Scholar 

  11. Guedj N, Couvelard A, Arcangeli G et al. (2004) Angiogenesis and extracellular matrix remodelling in bronchioloalveolar carcinomas: distinctive patterns in mucinous and non-mucinous tumours. Histopathology 44 (3): 251–6

    Article  PubMed  CAS  Google Scholar 

  12. Bariety M, Delarue J, Paillas J et al. (1967) Les carcinomes bronchiques primitifs. Paris: Masson

    Google Scholar 

  13. Semenza G. (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64: 993–8

    Article  PubMed  CAS  Google Scholar 

  14. Hicklin D, Ellis L (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011–27

    Article  PubMed  CAS  Google Scholar 

  15. Morgensztern D, Govindan R (2006) Clinical trials of antiangiogenic therapy in non-small cell lung cancer: focus on bevacizumab and ZD6474. Expert Rev Anticancer Ther 6: 545–51

    Article  PubMed  CAS  Google Scholar 

  16. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581–611

    Article  PubMed  CAS  Google Scholar 

  18. Bertolini F, Shaked Y, Mancuso P et al. (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6: 835–45

    Article  PubMed  CAS  Google Scholar 

  19. Fan F, Wey JS, McCarty MF et al. (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24: 2647–53

    Article  PubMed  CAS  Google Scholar 

  20. Soker S, Fidder H, Neufeld G et al. (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 271: 5761–7

    Article  PubMed  CAS  Google Scholar 

  21. Sack U, Hoffmann M, Zhao XJ et al. (2005) Vascular endothelial growth factor in pleural effusions of different origin. Eur Respir J 25: 600–4

    Article  PubMed  CAS  Google Scholar 

  22. Inai T, Mancuso M, Hashizume H et al. (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165: 35–52

    PubMed  CAS  Google Scholar 

  23. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15: 102–11

    Article  PubMed  CAS  Google Scholar 

  24. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7: 987–9

    Article  PubMed  CAS  Google Scholar 

  25. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62

    Article  PubMed  CAS  Google Scholar 

  26. Warren RS, Yuan H, Matli MR et al. (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95: 1789–97

    Article  PubMed  CAS  Google Scholar 

  27. Johnson DH, Fehrenbacher L, Novotny WF et al. (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22: 2184–91

    Article  PubMed  CAS  Google Scholar 

  28. Sandler A, Gray R, Perry MC et al. (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: 2542–50

    Article  PubMed  CAS  Google Scholar 

  29. Manegold C (2007) ASCO Abstract LBA7514

    Google Scholar 

  30. Pichelmayer O, Gruenberger B, Zielinski C (2006) Bevacizumab is active in malignant effusion. Ann Oncol 17: 1853

    Article  PubMed  CAS  Google Scholar 

  31. Socinski M, Novello S, Sanchez J (2006) Efficacity of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter phase II trial. Proc Am Soc Clin Oncol 24: 364s (Abstract 7001)

    Google Scholar 

  32. Gatzemeier U, Blumenschein G, Fosella F (2006) Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma. Proc Am Soc Clin Oncol 24: 364s (Abstract 7002)

    Google Scholar 

  33. Natale R, Bodkin D, Govindan R (2006) ZD6474 versus gefitinib in patients with advanced NSCLC: final results from a two part, double-blind, randomized phase II trial. Proc Am Soc Clin Oncol 24: 364s (Abstract 7000)

    Google Scholar 

  34. Heymach JV, Johnson B, Prager D (2006) A phase II trial of ZD6474 plus docetaxel in patients with previously trated NSCLC: follow-up results. J Clin Oncol 24: 7016

    Google Scholar 

  35. Heymach JV (2005) ZD6474-clinical experience to date. Br J Cancer 92 Suppl 1: S14–20

    Article  PubMed  CAS  Google Scholar 

  36. Gauler T, Fischer B, Soria J (2006) Phase II open-label study to investigate efficacy and safety of PTK787/ZK222584 orally administered once daily at 1250 mg as second line monotherapy in patients with stage IIIB or stage IV non-small-cell lung cancer. J Clin Oncol 24: 7195

    Google Scholar 

  37. Pujol JL (2008) In Reply. J Clin Oncol 26: 160–1

    Article  Google Scholar 

  38. Sandler A, Herbst R (2006) Combining targeted agents: blocking the epidermal growth factor and vascular endothelial growth factor pathways. Clin Cancer Res 12: 4421s–5s

    Article  PubMed  CAS  Google Scholar 

  39. Herbst RS, O’Neill VJ, Fehrenbacher L et al. (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell-lung cancer. J Clin Oncol 25: 4743–50

    Article  PubMed  CAS  Google Scholar 

  40. Karrison T (2007) Final analysis of a multi-center, double-blind, placebo-controlled, rendomized phase II trial of gemcitabine/cisplatin (GC) plus bevacizumab (B) or placebo (P) in patients (pts) with malignant mesothelioma (MM). Proc Am Soc Clin Oncol Abstract 7526: 391s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Pagès, O.N., Morère, J.F. (2008). Traitements antiangiogéniques dans le cancer du poumon. In: Thérapeutiques antiangiogéniques en cancérologie. Oncologie pratique. Springer, Paris. https://doi.org/10.1007/978-2-287-71655-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71655-3_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71654-6

  • Online ISBN: 978-2-287-71655-3

Publish with us

Policies and ethics