Skip to main content

Abstrait

Depuis le début des années 1970, ľexistence ďune relation étroite entre le statut nutritionnel et les capacités de réponse inflammatoire et immunitaire (RII) à ľagression est admise. Les premiers travaux ont montré qu’une dénutrition protéino-énergétique, altérait significativement la réponse immunitaire, tant innée qu’acquise, augmentant ainsi le risque infectieux et le taux de mortalité des malades les plus dénutris. Plus récemment, il est également apparu que ľobésité interférait avec la RII. Ces relations et les principaux mécanismes qui y conduisent seront brièvement revus dans la première partie de ce chapitre, après un rappel des étapes clés de la RII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116: 241–9

    Article  PubMed  CAS  Google Scholar 

  2. Korzenic JR, Podolsky DK (2006) Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 5: 197–209

    Article  CAS  Google Scholar 

  3. Wehkamp J, Fellerman K, Herrlinger KR et al. (2005) Mechanisms of disease: defensins in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol 2: 406–15

    Article  PubMed  CAS  Google Scholar 

  4. Beisswenger C, Bals R (2005) Antimicrobial peptides in lung inflammation. Chem Immunol Allergy 86: 55–71

    PubMed  CAS  Google Scholar 

  5. Kawai T, Akira S (2005) Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17: 338–44

    Article  PubMed  CAS  Google Scholar 

  6. Strober W, Murray PJ, Kitani A, Watanabe T (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6: 9–20

    Article  PubMed  CAS  Google Scholar 

  7. Zingarelli B (2005) Nuclear factor-kappa B. Crit Care Med 33(12 Suppl): S414–6

    Article  PubMed  Google Scholar 

  8. Rossi M, Young JW (2005) Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175: 1373–81

    PubMed  CAS  Google Scholar 

  9. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6: 173–82

    Article  PubMed  CAS  Google Scholar 

  10. Beaudeux JL, Vasson MP (2005) Sources cellulaires des espèces réactives de ľoxygène. In: Lavoisier, Éditions Tec & Doc, Éditions Médicales internationales (ed) Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Editions Tec & Doc, Éditions Médicales internationales, Londres-Paris-New York, p 45–86

    Google Scholar 

  11. Barouki R, Morel Y, Garlatti M (2005) Radicaux libres, facteurs transcriptionnels et régulation des gènes. In: Lavoisier, Éditions Tec & Doc, Éditions Médicales internationales (ed) Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Éditions Tec & Doc, Éditions Médicales internationales, Londres-Paris-New York, p 245

    Google Scholar 

  12. Chang CI, Liao J, Kuo L (1998) Arginase modulates nitric oxide production in activated macrophages. Am J Physiol 274: H342–8

    PubMed  CAS  Google Scholar 

  13. Secco DD, Paron JA, de Oliveira SH et al. (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9: 153–64

    Article  CAS  Google Scholar 

  14. Kaufmann SHE, Schaible UE (2005) Antigen presentation and recognition in bacterial infections. Curr Opin Immunol 17: 79–87

    Article  PubMed  CAS  Google Scholar 

  15. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8: 223–46

    PubMed  Google Scholar 

  16. Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114: 1198–208

    Article  PubMed  CAS  Google Scholar 

  17. Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and anti-inflammatory cytokines, and immunity. Ann N Y Acad, Sci 966: 290–303

    Article  CAS  Google Scholar 

  18. MacConmara M, Lederer JA (2005) B cells. Crit Care Med 33 (Suppl.): S514–6

    Article  PubMed  Google Scholar 

  19. Jiang H, Chess L (2006) Regulation of immune responses by T cells. J Eng J Med 354: 1166–76

    Article  CAS  Google Scholar 

  20. Heasman SJ, Giles KM, Ward C et al. (2003) Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol 178: 29–36

    Article  PubMed  CAS  Google Scholar 

  21. Herold MJ, McPherson KG, Reichardt HM (2006) Glucocorticoids in T cell, apoptosis and function. Cell Mol Life Sci 63: 60–72

    Article  PubMed  CAS  Google Scholar 

  22. Januszkiewicz A, Essen P, McNurlan MA et al. (2001) A combined stress hormone infusion decreases in vivo protein synthesis in human T lymphocytes in healthy volunteers. Metabolism 50: 1308–14

    Article  PubMed  CAS  Google Scholar 

  23. Walrand S, Guillet C, Boirie Y, Vasson MP (2004) In vivo evidences that in insulin regulates human polymorphonuclear neutrophil functions. J Leukoc Biol 76: 1104–10

    Article  PubMed  CAS  Google Scholar 

  24. Walrand S, Guillet C, Gachon P et al. (2005) Insulin regulates protein synthesis rate in leukocytes from young and elderly healthy humans. Clin Nutr 24: 1089–98

    Article  PubMed  CAS  Google Scholar 

  25. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115: 911–9

    Article  PubMed  CAS  Google Scholar 

  26. Caldefie-Chezet F, Guillot J, Vasson MP (2003) La leptine: hormone et cytokine impliquée dans la réponse à ľagression. Nutr Clin Metabol 17: 15–23

    CAS  Google Scholar 

  27. Waelput W, Brouckaert P, Broekaert D, Tavernier J (2006) A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response, an update. Curr Med Chem 13:465–75

    Article  PubMed  CAS  Google Scholar 

  28. De Rosa V, Procaccini C, La Cava A et al. (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116: 447–55

    Article  PubMed  CAS  Google Scholar 

  29. Wolf AM, Wolf D, Rumpold H et al. (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-IRA in human leukocytes. Biochem Biophys Res Commun 323: 630–5

    Article  PubMed  CAS  Google Scholar 

  30. Hattori Y, Hattori S, Kasai K (2006) Globular adiponectin activates nuclear factor-kappaB in vascular endothelial cells, which in turn induces expression of proinflammatory and adhesion molecule genes. Diabetes Care 29: 139–41

    Article  PubMed  CAS  Google Scholar 

  31. van der Lely AJ, Tschop M, Heiman ML, Ghigo E (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25: 426–57

    Article  PubMed  CAS  Google Scholar 

  32. Sanders VM (2006) Interdisciplinary research: noradrenergic regulation of adaptive immunity. Brain Behav Immun 20: 1–8

    Article  PubMed  CAS  Google Scholar 

  33. Cartwright M (2004) The metabolic response to stress: a case of complex nutrition support management. Crit Care Nurs Clin N Am 16: 467–87

    Google Scholar 

  34. Baracos VE (2003) Overview on metabolic adaptation to stress. In: Cynober L, Moore FA (ed) Nutrition and critical care. Nestle Nutrition Workshop Series Clinical and Performance Program. Netc Ltd, Vevey (Suisse), vol 8, p 1–13

    Google Scholar 

  35. Wolfe RR (1987) Carbohydrate metabolism in the critically ill patients. Crit Care Clin 3: 11–24

    PubMed  CAS  Google Scholar 

  36. McCowen KC, Malhortra A, Bistrian BR (2001) Stress induced hyperglycemia. Crit Care Clin 17: 107–24

    Article  PubMed  CAS  Google Scholar 

  37. Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290: 2041–7

    Article  PubMed  CAS  Google Scholar 

  38. van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–67

    Article  PubMed  Google Scholar 

  39. van den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–61

    Article  PubMed  Google Scholar 

  40. Wolfe RR (2005) Regulation of skeletal muscle protein metabolism in catabolic states. Curr Opin Clin Nutr Metab Care 8: 61–5

    Article  PubMed  CAS  Google Scholar 

  41. Lee JO, Herndon DN (2003) Modulation of the post burn hypermetabolic state. In: Cynober L, Moore FA (ed) Nutrition and critical care. Nestle Nutrition Workshop Series Clinical and Performance Program, Netc Ltd, Vevey (Suisse), vol 8, p 39

    Google Scholar 

  42. Jeschke MG, Klein D, Herndon DN (2004) Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 239: 553–60

    Article  PubMed  Google Scholar 

  43. Nitenberg G (2003) Nutritional support in sepsis and multiple organ failure. In: Cynober L, Moore FA (ed) Nutrition and critical care. Nestle Nutrition Workshop Series Clinical and Performance Program. Netc Ltd, Vevey (Suisse), vol 8, p 223–44

    Google Scholar 

  44. Savino W (2002) The thymus gland is a target in malnutrition. Eur J Clin Nutr 56 (Suppl 3): S46–9

    Article  PubMed  CAS  Google Scholar 

  45. Chandra RK (1996) Nutrition, immunity and infection: from basic knowledge of dietary manipulation of immune response to practical application of ameliorating suffering and improving survival. Proc Natl Acad Sci USA 93: 14304–7

    Article  PubMed  CAS  Google Scholar 

  46. Lesourd B (2004) Nutrition: a major factor influencing immunity in the elderly. J Nutr Health Aging 8: 28–37

    PubMed  CAS  Google Scholar 

  47. Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115: 1119–28

    Article  PubMed  CAS  Google Scholar 

  48. Bastard JP, Maachi M, Lagathu C et al. (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17: 4–12

    PubMed  CAS  Google Scholar 

  49. Esposito K, Pontillo A, Di Palo C et al. (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289: 1799–804

    Article  PubMed  CAS  Google Scholar 

  50. van Dielen FM, Buurman WA, Hadfoune M et al. (2004) Macrophage inhibitory factor, plasminogen activator, inhibitor-1, other acute phase proteins, and inflammatory mediators normalize as a result of weight loss in morbidly obese subjects treated with gastric restrictive surgery. J Clin Endocrinol Metab 89: 4062–8

    Article  PubMed  CAS  Google Scholar 

  51. Albers R, Antoine JM, Bourdet-Sicard R et al. (2005) Markers to measure immunomodulation in human nutrition intervention studies. Br J Nutr 94: 452–81

    Article  PubMed  CAS  Google Scholar 

  52. Newsholme P, Curi R, Pithon Curi TC et al. (1999) Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem 10: 316–24

    Article  PubMed  CAS  Google Scholar 

  53. Newsholme P, Procopio J, Lima MM et al. (2003) Glutamine and glutamate: their central role in cell metabolism and function. Cell Biochem Funct 21: 1–9

    Article  PubMed  CAS  Google Scholar 

  54. Potenza MA, Nacci C, Mitolo-Chieppa D (2001) Immunoregulatory effects of L-arginine and therapeutical implications. Curr Drug Targets Immune Endocr Metabol Disord 1: 67–77

    Article  PubMed  CAS  Google Scholar 

  55. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–54

    Article  PubMed  CAS  Google Scholar 

  56. Curis E, Nicolis I, Moinard C et al. (2005) Almost all about citrulline in mammals. Amino Acids 29: 177–205

    Article  PubMed  CAS  Google Scholar 

  57. Muhling J, Fuchs M, Campos M et al. (2004) Effects of ornithine on neutrophil (PMN) free amino acid and alpha-keto acid profiles and immune functions in vitro. Amino Acids 27: 313–9

    Article  PubMed  CAS  Google Scholar 

  58. Santangelo F (2003) Intracellular thiol concentration modulating inflammatory response: influence on the regulation of cell functions through cysteine prodrug approach. Curr Med Chem 10: 2599–610

    Article  PubMed  CAS  Google Scholar 

  59. Dawson H, Collins G, Pyle R et al. (2004) The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mech Ageing Dev 125: 107–10

    Article  PubMed  CAS  Google Scholar 

  60. Schroecksnadel K, Frick B, Wirleitner B et al. (2004) Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 5: 107–18

    Article  PubMed  CAS  Google Scholar 

  61. Calder PC (2006) Branched-chain amino acids and immunity. J Nutr 136 (1 Suppl): 288S–93S

    PubMed  CAS  Google Scholar 

  62. Grimble GK, Westwood OM (2001) Nucleotides as immunomodulators in clinical nutrition. Curr Opin Clin Nutr Metab Care 4: 57–64

    Article  PubMed  CAS  Google Scholar 

  63. Jason J, Archibald LK, Nwanyanwu OC et al. (2002) Vitamin A levels and immunity in humans. Clin Diagn Lab Immunol 9: 616–21

    Article  PubMed  CAS  Google Scholar 

  64. Azaïs-Braesco V, Grolier P (2001) Vitamine A et caroténoïdes provitaminiques. In: Martin A, Azaïs-Braesco V, Besson JL et al. (eds) Apports Nutritionnels Conseillés pour la Population Française 3e édition. Éditions Tec & Doc, Paris, p 221

    Google Scholar 

  65. Aukrust P, Muller F, Ueland T et al. (2000) Decreased vitamin A levels in common variable immunodeficiency: vitamin A supplementation in vivo enhances immunoglobulin production and downregulates inflammatory responses. Eur J Clin Invest 30: 252–9

    Article  PubMed  CAS  Google Scholar 

  66. Faure H, Fayol V, Galabert C et al. (1999) Carotenoids 2: Diseases and supplementation studies. Ann Biol, Clin (Paris) 57: 273–82

    CAS  Google Scholar 

  67. Hughes DA (1999) Effects of carotenoids on human immune function. Proc Nutr Soc 58: 713–8

    Article  PubMed  CAS  Google Scholar 

  68. Watzl B, Bub A, Brandstetter BR, Rechkemmer G (1999) Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables Br J Nutr 82: 383–9

    PubMed  CAS  Google Scholar 

  69. Walrand S, Farges MC, Dehaese O et al. (2005) In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary minipulation. Eur J Nutr 44: 114–20

    Article  PubMed  CAS  Google Scholar 

  70. Moriguchi S, Muraga M (2000) Vitamin E and immunity. Vitam Horm 59: 305–36

    PubMed  CAS  Google Scholar 

  71. Hsieh CC, Huang CJ, Lin BF (2006) Low and high levels of alpha-tocopherol exert opposite effects on IL-2 possibly through the modulation of PPAR-gamma, IkappaBalpha, and apoptotic pathway in activated splenocytes. Nutrition 22: 433–40

    Article  PubMed  CAS  Google Scholar 

  72. Meydani SN, Han SN, Wu D (2005) Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev 205: 269–84

    Article  PubMed  CAS  Google Scholar 

  73. Tauler P, Aguilo A, Gimeno I et al. (2003) Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 37: 931–8

    Article  PubMed  CAS  Google Scholar 

  74. Bergman M, Salman H, Djaldetti M et al. (2004) In vitro immune response of human peripheral blood cells to vitamins C and E. J Nutr Biochem 15: 45–50

    Article  PubMed  CAS  Google Scholar 

  75. Hayes CE, Nashold FE, Spach KM, Pedersen LB (2003) The immunological functions of the vitamin D endocrine system. Cell Mol Biol 49: 277–300

    PubMed  CAS  Google Scholar 

  76. Matsuzaki J, Tsuji T, Zhang Y et al. (2006) 1alpha, 25-Dihydroxyvitamin D3 downmodulates the functional differentiation of Th1 cytokine-conditioned bone marrow-derived dendritic cells beneficial for cytotoxic T lymphocyte generation. Cancer Sci 97: 139–47

    Article  PubMed  CAS  Google Scholar 

  77. Helming L, Bose J, Ehrchen J et al. (2005) 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 106: 4351–8

    Article  PubMed  CAS  Google Scholar 

  78. Meydani SN, Ribaya-Mercado JD, Russell RM et al. (1991) Vitamin B-6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. Am J Clin Nutr 53: 1275–80

    PubMed  CAS  Google Scholar 

  79. Huang YC, Chang HH, Huang SC et al. (2005) Plasma pyridoxal 5′-phosphate is a significant indicator of immune responses in the mechanically ventilated critically ill. Nutrition 21: 779–85

    Article  PubMed  CAS  Google Scholar 

  80. Courtemanche C, Elson-Schwab I, Mashiyama ST et al. (2004) Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. J Immunol 173: 3186–92

    PubMed  CAS  Google Scholar 

  81. Tamura J, Kubota K, Murakami H et al. (1999) Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol 116: 28–32

    Article  PubMed  CAS  Google Scholar 

  82. Cousins RJ, Blanchard RK, Moore JB et al. (2003) Regulation of zinc metabolism and genomic outcomes. J Nutr 133(5 Suppl 1): 1521S–6S

    PubMed  CAS  Google Scholar 

  83. Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24: 277–98

    Article  PubMed  CAS  Google Scholar 

  84. Baum MK, Campa A, Lai S et al. (2003) Zinc status in human immunodeficiency virus type 1 infection and illicit drug use. Clin Infect Dis 37 (Suppl 2): S117–23

    Article  PubMed  CAS  Google Scholar 

  85. Ferencik M, Ebringer L (2003) Modulatory effects of selenium and zinc on the immune system. Folia Microbiol (Praha) 48: 417–26

    CAS  Google Scholar 

  86. Rayman MP (2000) The importance of selenium to human health. Lancet 356: 233–41

    Article  PubMed  CAS  Google Scholar 

  87. He SX, Wu B, Chang XM et al. (2004) Effects of selenium on peripheral blood mononuclear cell membrane fluidity, interleukin-2 production and interleukin-2 receptor expression in patients with chronic hepatitis. World J Gastroenterol 10: 3531–3

    PubMed  CAS  Google Scholar 

  88. Jason J, Archibald LK, Nwanyanwu OC et al. (2001) The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol 126: 466–73

    Article  PubMed  CAS  Google Scholar 

  89. Ahluwalia N, Sun J, Krause D et al. (2004) Immune function is impaired in iron-deficient, homebound, older women. Am J Clin Nutr 79: 516–21

    PubMed  CAS  Google Scholar 

  90. Walker EM Jr, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30: 354–65

    PubMed  CAS  Google Scholar 

  91. Yaqoob P (2003) Lipids and the immune response: from molecular mechanisms to clinical application. Curr Opin Clin Nutr Metab Care 6: 133–50

    Article  PubMed  CAS  Google Scholar 

  92. Wu D (2004) Modulation of immune and inflammatory responses by dietary lipids. Curr Opin Lipidol 15: 43–7

    Article  PubMed  CAS  Google Scholar 

  93. Kelley DS, Dougherthy RM, Branch LB et al. (1992) Concentration of dietary n−6 polyunsaturated fatty acids and human immune status. Clin Immunol Immunopathol 62: 240–4

    Article  PubMed  CAS  Google Scholar 

  94. Kelley DS (2001) Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 17: 669–73

    Article  PubMed  CAS  Google Scholar 

  95. Kew S, Banerjee T, Minihane AM et al. (2003) Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25–72 y. Am J Clin Nutr 77: 1278–86

    PubMed  CAS  Google Scholar 

  96. Larbi A, Grenier A, Frisch F et al. (2005) Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation. Am J Clin Nutr 82: 949–56

    PubMed  CAS  Google Scholar 

  97. Calder PC (2003) N−3 polyunsaturated fatty acids and inflammation: from molecular biology to clinic. Lipids 38: 343–52

    Article  PubMed  CAS  Google Scholar 

  98. Trebble TM, Wootton SA, Miles EA et al. (2003) Prostaglandin E2 production and T cell function after fish-oil supplementation: response to antioxidant cosupplementation. Am J Clin Nutr 78: 376–82

    PubMed  CAS  Google Scholar 

  99. Sperling RI, Benincaso AI, Knoell CT et al. (1993) Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 91: 651–60

    Article  PubMed  CAS  Google Scholar 

  100. Calder PC (2005) Polyunsaturated fatty acids and inflammation. Biochem Soc Trans 33 (Pt2): 423–7

    PubMed  CAS  Google Scholar 

  101. Trebble T, Arden NK, Stroud MA et al. (2003) Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr 90: 405–12

    Article  PubMed  CAS  Google Scholar 

  102. Serhan CN, Hong S, Gronert K et al. (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196: 1025–37

    Article  PubMed  CAS  Google Scholar 

  103. Zhao G, Etherton TD, Martin KR et al. (2005) Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 336: 909–17

    Article  PubMed  CAS  Google Scholar 

  104. Switzer KC, McMurray DN, Chapkins RS (2004) Effects of dietary n−3 polyunsaturated fatty acids on T-cell membrane composition and function. Lipids 39: 1163–70

    Article  PubMed  CAS  Google Scholar 

  105. Horejsi V (2005) Lipid rafts and their roles in T-cell activation. Microbes Infect 7: 310–6

    Article  PubMed  CAS  Google Scholar 

  106. Kew S, Mesa MD, Tricon S et al. (2004) Effects of oil rich in eicosapentaenoic and docohexaenoic acids on immune cell composition and function in healthy humans. Am J Clin Nutr 79: 674–81

    PubMed  CAS  Google Scholar 

  107. Miles EA, Banerjee T, Dooper MMBW et al. (2004) The influence of different combinations of γ-linolenic acid, stearidonic acid and EPA on immune function in healthy young male subjects. Br J Nutr 91: 893–903

    Article  PubMed  CAS  Google Scholar 

  108. Rees D, Miles EA, Banerjee T et al. (2006) Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older man. Am J Clin Nutr 83: 331–42

    PubMed  CAS  Google Scholar 

  109. Hasselmann M, Reimund JM (2004) Lipids in the nutritional support of the critically ill patients. Curr Opin Crit Care 10: 449–55

    Article  PubMed  Google Scholar 

  110. Moussa M, LeBoucher J, Garcia V et al. (2000) In vivo effects of olive oil-based lipid emulsion on lymphocyte activation in rats. Clin Nutr 19: 49–54

    Article  PubMed  CAS  Google Scholar 

  111. Reimund JM, Scheer O, Muller CD et al. (2004) In vitro modulation of inflammatory cytokine production by three lipid emulsions with different fatty acid compositions. Clin Nutr 23: 1324–32

    Article  PubMed  CAS  Google Scholar 

  112. Reimund JM, Rahmi G, Escalin G et al. (2005) Efficacy and safety of an olive oil-based intravenous fat emulsion in adult patients on home parenteral nutrition. Aliment Pharmacol Ther 21: 445–54

    Article  PubMed  CAS  Google Scholar 

  113. O’Shea M, Bassaganya-Riera J, Mohede ICM (2004) Immunomodulary properties of conjugated linoleic acid. Am J Clin Nutr 79 (suppl): 1199S–206S

    Google Scholar 

  114. Song HJ, Grant I, Rotondo D et al. (2005) Effect of CLA supplementation on immune function in young healthy volunteers. Eur J Clin Nutr 59: 508–17

    Article  PubMed  CAS  Google Scholar 

  115. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43: 553–87

    Article  PubMed  CAS  Google Scholar 

  116. Ogawa H, Rafiee P, Fisher PJ et al. (2003) Butyrate modulates gene and protein expression in human endothelial cells. Biochem Biophys Res Commun 309: 512–9

    Article  PubMed  CAS  Google Scholar 

  117. Saemann MD, Bohmig GA, Osterreicher CH et al. (2000) Antiinflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 14: 2380–2

    PubMed  CAS  Google Scholar 

  118. Gilbert KM, Wahid R, Fecher NP et al. (2000) Potential clinical use of butyric acid derivatives to induce antigen-specific T cell inactivation. J Pharmacol Exp Ther 294: 1146–53

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Vasson, MP., Reimund, JM. (2007). Nutrition, immunité et inflammation. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_34

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics