Skip to main content

Hydrodynamic Instability

  • Chapter
Compendium of Meteorology

Abstract

The concept of dynamic instability appeared along with the initial developments in the theory of atmospheric disturbances [2]. In the method of perturbations, which V. Bjerknes introduced into meteorology, a “small motion” is superimposed on a state of “simple motion” of the air. This “simple motion” is always a permanent motion characterized, at every point of the medium, by equilibrium of the forces perpendicular to the direction of the flow. These forces are gravity, the pressure gradient (hydrostatic equilibrium), the Coriolis force (state of geostrophic motion), and the centrifugal force (circular vortex). The “simple motion,” therefore, is evidently a state of hydrodynamic equilibrium.

Translated from the original French.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjerknes, J., and Holmboe, J., “On the Theory of Cy clones.” J. Meteor., 1:1–22 (1944).

    Article  Google Scholar 

  2. Bjerknes, V., and others, Hydrodynamique physique. Paris, Presses Universitaires de France, 1934.

    Google Scholar 

  3. Charney, J. G., “The Dynamics of Long Waves in a Baroclinic Westerly Current.” J. Meteor., 4:135–162 (1947).

    Article  Google Scholar 

  4. Charney, J. G., “On the Scale of Atmospheric Motions.” Geofys. Publ, Vol. 17, No. 2, 17 pp. (1948).

    Google Scholar 

  5. Ertel, H., “Uber die Stabilitat der zonalen atmosphari schen Zirkulation.” Meteor. Z., 57:397–400 (1940).

    Google Scholar 

  6. Ertel, H., “Die Westwindgebiete der Troposphare als Instabili-tatszonen.” Meteor. Z., 60:397–400 (1943).

    Google Scholar 

  7. Ertel, H., Jaw, J.-J. und Li, S.-z., “Tensorielle Theorie der Stabilität.” Meteor. Z., 58:389–392 (1941).

    Google Scholar 

  8. Fjørtoft, R., “On the Deepening of a Polar Front Cy clone.” Meteor. Ann., 1:30–44 (1942).

    Google Scholar 

  9. Fjørtoft, R., “On the Frontogenesis and Cyclogenesis in the At mosphere. Part I—On the Stability of the Stationary Circular Vortex.” Geofys. Publ., Vol. 16, No. 5, 28 pp. (1946).

    Google Scholar 

  10. Fjørtoft, R., “Application of Integral Theorems in Deriving Cri teria of Stability for Laminar Flows and for the Baroclinic Circular Vortex.” Geofys. Publ., Vol. 17, No. 6, 52 pp. (1950).

    Google Scholar 

  11. Godson, W. L., “Generalized Criteria for Dynamic In stability.” J. Meteor., 7:268–278 (1950).

    Article  Google Scholar 

  12. Godson, W. L., “Synoptic Significance of Dynamic Instability.” J. Meteor., 7:333–342 (1950).

    Article  Google Scholar 

  13. Helmholtz, H. V., “Uber atmospharische Bewegungen.” Meteor. Z., 5:329–340 (1888).

    Google Scholar 

  14. Høiland, E., “On the Interpretation and Application of the Circulation Theorems of V. Bjerknes.” Arch. Math. Naturv., 42:25–57 (1939).

    Google Scholar 

  15. Høiland, E., “On the Stability of the Circular Vortex.” Avh. NorskeVidenskAkad. Ser. 1, No. 11, 24 pp. (1941).

    Google Scholar 

  16. Holmboe, J., “On Dynamic Stability of Zonal Currents.” J. mar. 7:163–174 (1948).

    Google Scholar 

  17. Kleinschmidt, E., “Zur Theorie der labilen Anordnung.” Meteor. Z., 58:157–163 (1941).

    Google Scholar 

  18. Kleinschmidt, E., “Stabilitatstheorie des geostrophischen Windfeldes.” Ann. Hydrogr., Berl., 69:305–325 (1941).

    Google Scholar 

  19. Kuo, H.-l., “Dynamic Instability of Two-Dimensional Nondivergent Flow in a Barotropic Atmosphere.” J. Meteor 6:105–122 (1949).

    Article  Google Scholar 

  20. Möller, F., “Der Zusammenhang statischer und dyna-mischer Labilitat nach E. Kleinschmidt.” Meteor. Z., 60:269–273 (1943).

    Google Scholar 

  21. Moltschanow, P., “Bedingungen des Gleichgewichts und der Stabilität der Luftmassen nach der Horizontalen und der Vertikalen.” Petermanns Mitt., Erganzungsband 47, Heft 216, SS. 62–67 (1933).

    Google Scholar 

  22. Palmén, E., “On the Distribution of Temperature and Wind in the Upper Westerlies.” Meteor., 5:20–27 (1948).

    Article  Google Scholar 

  23. Palmén, E., and Nagler, K. M., “An Analysis of the Wind and Temperature Distribution in the Free Atmosphere over North America in a Case of Approximately Westerly Flow.” J. Meteor 5:58–64 (1948).

    Article  Google Scholar 

  24. Palmén, E., and Newton, C. W., “A Study of the Mean Wind and Temperature Distribution in the Vicinity of the Polar Front in Winter.” J. Meteor., 5:220–226 (1948).

    Article  Google Scholar 

  25. Priebsch, J., “Eine Bemerkung zur Dynamik turbulenter Strömungen unter dem Einfluss der Erdrotation.” Ann. HydrogrBerl., 71:169–171 (1943).

    Google Scholar 

  26. Queney, P., “Adiabatic Perturbation Equations for a Zonal Atmospheric Current.” Tellus, Vol. 2, No. 1, pp. 35–51 (1950).

    Article  Google Scholar 

  27. Raethjen, P., “Labile Gleitumlagerungen.” Ann. Hy drogr., Berl., 69:325–331 (1941).

    Google Scholar 

  28. Rossby, C.-G., and Collaborators, “Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semipermanent Centers of Action.” J. mar. Res., 2:38–55 (1939).

    Article  Google Scholar 

  29. Rossby, C.-G., Namias, J., and Simmers, R. G., “Fluid Mechanics Applied to the Study of Atmospheric Circulations.” Pap. phys. Ocean. Meteor. Mass. Inst, Tech. Woods Hole ocean. Instn., Vol. 7, No. 1, pp. 1–125 (1938).

    Google Scholar 

  30. Sawyer, J. S., “Notes on the Theory of Tropical Cyclones.” Quart. J. R. meteor. Soc., 73:101–126 (1947).

    Article  Google Scholar 

  31. Solberg, H., “Le mouvement d’inertie de l’atmosphère stable et son rô1e dans la théorie des cyclones.” P. V. Météor. Un. geod. geophys. int. Edimbourg, septembre 1936, 11:66–82 (1939).

    Google Scholar 

  32. University of Chicago, Dept. Meteor., On the Gen eral Circulation of the Atmosphere in Middle Latitudes. ” Bull. Amer. meteor. Soc., 28:255–280 (1947).

    Google Scholar 

  33. Van Mieghem, J., “Forme intrinseque du critere d’insta-bilite dynamique de E. Kleinschmidt.” Bull. Acad. Belg. Cl. Sci., 5e s£r., 30:19–33 (1944).

    Google Scholar 

  34. Van Mieghem, J., “Relation d’identité entre la stabilite de l’équilibré dynamique de E. Kleinschmidt et la stabilité des oscillations d’inertie de l’atmosphere terrestre.” Bull. Acad. Belg. Cl. Sci., 5e sér., 30:134–143 (1944).

    Google Scholar 

  35. Van Mieghem, J., “Interprétations énergetiqués du critère d’instabilité de E. Kleinschmidt Bull. Acad. Belg. Cl. Sci., 5e sér., 31:345–352 (1945).

    Google Scholar 

  36. Van Mieghem, J., “Les oscillations d’inertie du courant géostrophique.” Bull. Acad. Belg. Cl. Sci., 5e sér., 31:547–555 (1945).

    Google Scholar 

  37. Van Mieghem, J., “Sur la stabilité du courant géostrophique.” La Météor ., pp. 9–33 (1946).

    Google Scholar 

  38. Van Mieghem, J., “Le principe d’extremum et la stabilite de certains états de mouvement de l’air atmospherique.” Arch. Meteor. Geophys. Biokl., (A) 1:347–357 (1949).

    Article  Google Scholar 

  39. Van Mieghem, J., “Contribution à l’étude de la cyclogénesè.” Inst. R. météor. Belg., Mém.: 23:1–23 (1946).

    Google Scholar 

  40. Van Mieghem, J., “L’instabilité hydrodynamique et les perturbations courant zonal d’Ouest.” Arch. Meteor. Geophys. Biokl., (A) 1:143–148 (1949).

    Article  Google Scholar 

  41. Van Mieghem, J., “La stabilité du mouvement permanent, horizontal et isobare de Pair atmosphérique.” Inst. R. météor. Belg., Mém,., 28:38–60 (1948).

    Google Scholar 

  42. Van Mieghem, J., “Perturbations d’un courant atmosphérique permanent zonal.” Inst. R. météor. Belg., Mém., 18:1–23 (1944).

    Google Scholar 

  43. Van Mieghem, J., “Lé quation aux dé rivées partielles de la pression de perturbation associ é e aux ondulations de grande Iongueur donde du courant géostrophique zonal.” Inst. R. météor. Belg., Mém., Vol. 39, 45 pp. (1950).

    Google Scholar 

  44. Van Mieghem, J., “Zijdelingse turbulentie in de atmosfeer.,, Med. K. VI. Acad. België, XII, No. 14, 16 pp. (1950).

    Google Scholar 

  45. Wexler, H., and Namias, J., “Mean Monthly Isentropic Charts and Their Relation to Departures of Summer Rainfall.” Trans. Amer. geophys. Un., 19:164–170 (1938).

    Article  Google Scholar 

  46. Wippermann, F., “Über die Rolle der dynamischen Labilität bei der Zyklogenese.” Ber. dtsch. Wetterd. U. S-Zone, Nr. 12, SS. 180–182 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas F. Malone

Rights and permissions

Reprints and permissions

Copyright information

© 1951 American Meteorological Society

About this chapter

Cite this chapter

van Mieghem, J.M. (1951). Hydrodynamic Instability. In: Malone, T.F. (eds) Compendium of Meteorology. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-70-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-70-9_37

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-70-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics