Skip to main content

Part of the book series: Meteorological Monographs ((METEOR,volume 4))

Abstract

The results of several years of research in atmospheric models are presented. A brief historical summary covers the important experimental work of early investigators in this field as well as the immediate background of the work at Chicago. The experiments are conducted in rotating cylindrical containers with various arrangements of the heat sources and sinks. A short description of the experimental apparatus and of several of the more unusual or important techniques which have evolved is presented.

To facilitate comparison to the prototype, the pertinent equations are developed in nondimensional form and the modeling criteria investigated in terms of the appropriate nondimensional parameters. Experience indicates that the most important of the controlled variables in the experiments are the rotation and heating rates. A nondimensional parameter is defined (the Rossby number, R0*) whose value roughly determines the types of motions observed.

Two principal convective regimes are found, corresponding to high and low values of the Rossby number. With a high Rossby number (Hadley regime), the motion is symmetric with the heat transport accomplished by ageostrophic components of the flow. At low Rossby numbers (Rossby regime), a wave regime is established, characterized by geostrophic heat transport. Empirical criteria for wave number changes and transition from symmetric to wave regimes in a rotating annulus are also presented.

The research reported in this document has been sponsored by the Geophysics Research Directorate of the Air Force Cambridge Research Center, Air Research and Development Command, under Contracts AF 19(122)-160 and AF 19(604)-1292.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, C., 1907: Comprehensive maps and models of the globe for special meteorological.studies. Mon. Wea. Rev., 35, 559–564.

    Article  Google Scholar 

  2. Abbe, C., 1907: Projections of the globe appropriate for labora- tory methods of studying the general circulation of the atmosphere. Bull. Amer. math. Soc., (2), 13, 502–506.

    Article  Google Scholar 

  3. Bellamy, J. C., 1945: The use of pressure altitude and altimeter corrections in meteorology. J. Meteor., 2, 1–79.

    Article  Google Scholar 

  4. Bigelow, F. H., 1902: IV Review of Ferrel’s and Oberbeck’s theories of the local and general circulations. Mon. Wea. Rev., 30, 163–171, experiment p. 165.

    Article  Google Scholar 

  5. Birkhoff, G., 1950: Hydrodynamics: A study in logic, fact, similitude. Princeton Univ. Press, 186 pp.

    Google Scholar 

  6. Bjerknes, V., 1916: Über thermodynamische Maschinen die unter Mitwirkung der Schwerkraft arbeiten. Abh. sächs. Akad. Wiss., 35, Nr. 1, 33 pp.

    Google Scholar 

  7. Bridgman, P. W., 1931: Dimensional analysis. New Haven, Yale Univ. Press, 113 pp.

    Google Scholar 

  8. Chandrasekhar, S., 1953: The instability of a layer of fluid heated below and subject to Coriolis forces. Proc. r. Soc. London, (A), 217, 306–327.

    Article  Google Scholar 

  9. Chandrasekhar, S., and D. D. Elbert, 1955: The instability of a layer of fluid heated below and subject to Coriolis forces II. Proc. r. Soc. London, (A), 231, 198–210.

    Google Scholar 

  10. Charney, J., 1947: The dynamics of long waves in a baro-clinic westerly current. J. Meteor., 4, 135–163.

    Article  Google Scholar 

  11. Corn, J., and D. Fultz, 1955: Synoptic analyses of convection in a rotating cylinder. Geophys. Res. Pap. No. 34, AFCRC, 72 pp.

    Google Scholar 

  12. Davies, T. V., 1953: Large scale atmospheric flow patterns in the laboratory. Aero. Res. Coun. F. M. 1896 15, 876, 1–5.

    Google Scholar 

  13. Davies, T. V., 1953: The forced flow of a rotating viscous liquid which is heated from below. Philosoph. Trans. r. Soc. London, (A), 246, 81–112.

    Article  Google Scholar 

  14. Davies, T. V., 1956: The forced flow due to heating of a rotating liquid. Philosoph. Trans. r. Soc. London, (A), 249, 27–64.

    Article  Google Scholar 

  15. Dorsey, N. E., 1940: Properties of ordinary water substance. Amer. chem. Soc. Mon. No. 81, New York, Rheinhold Publishing Corp., 673 pp.

    Google Scholar 

  16. Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

    Article  Google Scholar 

  17. Exner, F. M., 1923: Über die Bildung von Windhosen und Zyklonen. S. B. Akad. Wiss. Wien, Abt. Ila, 132, 1–16.

    Google Scholar 

  18. Faller, A. J., 1956: A demonstration of fronts and frontal waves in atmospheric models. J. Meteor., 13, 1–4.

    Article  Google Scholar 

  19. Fischer, K., 1931: Untersuchung der Strömung in einer Zentrifugalpumpe. Mitt. hydraul. Inst. de Tech. Hochsch. (Munchen), 4, 7–27.

    Google Scholar 

  20. Fjørtoft, R., 1950: Application of line integral theorems in deriving criteria for stability of a baroclinic circular vortex. Geofys. Publ., 17, No. 6, 52 pp.

    Google Scholar 

  21. Fultz, D., 1949: A preliminary report on experiments with thermally produced lateral mixing in a rotating hemispherical shell of liquid. J. Meteor., 6, 17–33.

    Article  Google Scholar 

  22. Fultz, D., 1950: Experimental studies of a polar vortex I. Tellus, 2, 137–149.

    Article  Google Scholar 

  23. Fultz, D., 1950: Experimental studies related to atmospheric flow around obstacles. Geofys. Pura e Appi., 17, 89–93.

    Google Scholar 

  24. Fultz, D., 1950: Experiments combining convection and rotation and some of their possible implications. Proc. Mid-West Conf. Flu. Dynam. (1st Conf.), 297–304.

    Google Scholar 

  25. Fultz, D., 1951: Experimental analogies to atmospheric motions. Compendium Meteor., 1235–1248.

    Google Scholar 

  26. Fultz, D., 1951: Non-dimensional equations and modelling criteria for the atmosphere. J. Meteor., 8, 262–267.

    Article  Google Scholar 

  27. Fultz, D., 1952: On the possibility of experimental models of the polar-front wave. J. Meteor., 9, 379–384.

    Article  Google Scholar 

  28. Fultz, D., 1956: A survey of certain thermally and mechanically driven fluid systems of meteorological interest, in Fluid models in geophysics. Proc. 1st Sympos. on the Use of Models in Geophys. Fluid Dynamics, Baltimore, Sept., 1953, 27–63.

    Google Scholar 

  29. Fultz, D., 1956: A fluid convection experiment of special theo- retical interest. J. Geophys. Res., 61, 328–334.

    Google Scholar 

  30. Fultz, D., and R. R. Long, 1951: Two-dimensional flow around a circular barrier in a rotating spherical shell. Tellus, 3, 61–68.

    Article  Google Scholar 

  31. Fultz, D., and P. Frenzen, 1955: A note on certain interesting ageostrophic motions in a rotating hemispherical shell. J. Meteor., 12, 332–338.

    Article  Google Scholar 

  32. Fultz, D., Y. Nakagawa, and P. Frenzen, 1954: An instance in thermal convection of Eddington’s “overstability”. Phys. Rev., 94, 1471–1472.

    Article  Google Scholar 

  33. Görtler, H., 1941: Neuere Beiträge zur Dynamik atmosphärischer and ozeanischer Strömungen. Naturwiss., 29, 473–479.

    Article  Google Scholar 

  34. Hadley, G., 1735: Concerning the cause of the general tradewinds. Philosoph. Trans. r. Soc., 39, 58–62.

    Article  Google Scholar 

  35. Halley, E., 1686: An historical account of the trade winds and monsoons, etc. Philosoph. Trans. r. Soc., 16, 153–168.

    Article  Google Scholar 

  36. Helmholtz, H., 1873: Über ein Theorem, geometrisch ähnlich Bewegungen flüssiger Körper betreffend, nebst Anwendung auf das Problem, Luft-ballons zu lenken. Monatsb. K. Akad. Wiss. Berlin, 501–504. (Translation in Abbe, C., 1893: The mechanics of the earth’s atmosphere. Smithsonian misc. Coll., 34, 67–77.)

    Google Scholar 

  37. Hide, R., 1953: Some experiments on thermal convection in a rotating liquid. Quart. J. r. Meteor. Soc., 79, 161.

    Article  Google Scholar 

  38. Hide, R., 1956: Fluid motion in the earth’s core and some experiments on thermal convection in a rotating liquid, in Fluid models in geophysics. Proc. 1st Sympos. on the Use of Models in Geophys. Fluid Dynamics, Baltimore, Sept. 1953, 101–116.

    Google Scholar 

  39. Jeffreys, H., 1925: On fluid motions produced by differences of temperature and humidity. Quart. J. r. Meteor. Soc., 51, 347–356.

    Article  Google Scholar 

  40. Kuo, H. L., 1953: The stability properties and structure of disturbances in a baroclinic atmosphere. J. Meteor., 10, 235–243.

    Article  Google Scholar 

  41. Kuo, H. L., 1954: Symmetrical disturbances in a thin layer of fluid subject to a horizontal temperature gradient and rotation. J. Meteor., 11, 399–411.

    Article  Google Scholar 

  42. Kuo, H. L., 1955: On convective instability of a rotating fluid with a horizontal temperature contrast. J. Marine Res., 14, 14–32.

    Google Scholar 

  43. Kuo, H. L., 1956: Energy-releasing processes and stability of thermally driven motions in a rotating fluid. J. Meteor., 13, 82–101.

    Article  Google Scholar 

  44. Kuo, H. L., 1956: Forced and free axially-symmetric convection produced by differential heating in a rotating fluid. J. Meteor., 13, 521–527.

    Article  Google Scholar 

  45. Kuo, H. L., 1956: On convective instability of a rotating fluid, in Fluid models in geophysics. Proc. 1st Sympos. on the Use of Models in Geophys. Fluid Dynamics, Baltimore, 65–72.

    Google Scholar 

  46. Langhaar, H. L., 1951: Dimensional analysis and theory of models. New York, J. Wiley and Sons, 177 pp.

    Google Scholar 

  47. Long, R. R., 1951: A theoretical and experimental study of the motion and stability of certain atmospheric vortices, J. Meteor., 8, 207–221.

    Article  Google Scholar 

  48. Long, R. R., 1952: The flow of a liquid past a barrier in a rotating spherical shell. J. Meteor., 9, 187–199.

    Article  Google Scholar 

  49. Long, R. R., 1953: Steady motion around a symmetrical obstacle moving along the axis of a rotating fluid. J. Meteor., 10, 197–203.

    Article  Google Scholar 

  50. Long, R. R., 1954: Note on Taylor’s “Ink Walls” in a rotating fluid. J. Meteor., 11, 247–249.

    Article  Google Scholar 

  51. Lorenz, E. N., 1952: Flow of angular momentum as a predictor for the zonal westerlies. J. Meteor., 9, 152–157.

    Article  Google Scholar 

  52. Lorenz, E. N., 1956: A proposed explanation for the existence of two regimes of flow in a rotating symmetrically-heated cylindrical vessel, in Fluid models in geophysics. Proc. 1st Sympos. on the Use of Models in Geophys. Fluid Dynamics, Baltimore, 73–80.

    Google Scholar 

  53. Mach, E., 1942: The science of mechanics. La Salle, Ill., Open Court Publ., 635 pp. (see p. 199 ff.).

    Google Scholar 

  54. Mintz, Y., 1955: Final computation of the mean geostrophic poleward flux of angular momentum and of sensible heat in the winter and summer of 1949. Final Report, Contract AF 19(122)-48, UCLA.

    Google Scholar 

  55. Mintz, Y., and S.-K. Kao, 1952: A zonal-index tendency equation and its application to forecasts of the zonal index. J. Meteor., 9, 87–92.

    Article  Google Scholar 

  56. Montgomery, R. B., 1937: A suggested method for representing gradient flow in isentropic surfaces. Bull. Amer. meteor. Soc., 18, 210–212.

    Google Scholar 

  57. Nakagawa, Y., and P. Frenzen, 1955: A theoretical and experimental study of cellular convection in rotating fluids. Tellus, 7, 1–21.

    Article  Google Scholar 

  58. Namias, J., 1954: Quasi-periodic cyclogenesis in relation to the general circulation. Tellus, 6, 8–22.

    Article  Google Scholar 

  59. Palmén, E., and K. Nagler, 1948: An analysis of the wind and temperature over North America in a case of approximately westerly flow. J. Meteor., 5, 58–64.

    Article  Google Scholar 

  60. Petterssen, S., and W. C. Swinbank, 1947: On the application of the Richardson criterion to large-scale turbulence in the free atmosphere. Quart. J. r. Meteor. Soc., 73, 335–345.

    Article  Google Scholar 

  61. Prandtl, L., 1939: Beiträge zur Mechanik der Atmosphäre. P. V. Meteor. Un. geod. geophys. int., Edinbourg, 1936, II.

    Google Scholar 

  62. Prandtl, L., 1952: Führer durch die strömungslehre. 3rd ed. Braunschweig, F. Vieweg, 382 pp.

    Google Scholar 

  63. Reynolds, O., 1883: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and, of the law of resistance in parallel channels. Paps. on mech. Phys. Subj. 2, 51–105, (Philosoph. Trans. r. Soc. London (A), 174 935).

    Google Scholar 

  64. Reynolds, O., 1893: Study of fluid motion by means of coloured bands. Paps. on mech. Phys. Subj. 2, 524–534, (Proc. r. Inst. Gt. Brit. 524–534).

    Google Scholar 

  65. Riehl, H., T. C. Yeh, and N. E. La Seur, 1950: A study of variations of the general circulation. J. Meteor., 7, 181–194.

    Article  Google Scholar 

  66. Riehl, H., 1952: Forecasting in middle latitudes. Meteor. Monogr., 1, No. 5, 80 pp.

    Google Scholar 

  67. Rogers, M. H., 1954: The forced flow of a thin layer of viscous fluid on a rotating sphere. Proc. r. Soc. London, (A), 224, 192–208.

    Article  Google Scholar 

  68. Rossby, C.-G., 1926: On the solution of problems of atmospheric motion by means of model experiments. Mon. Wea. Rev., 54, 237–240.

    Article  Google Scholar 

  69. Rossby, C.-G., 1928: Studies in the dynamics of the stratosphere. Beitr. Phys. frei Atmos., 14, 240–265 (see p. 261 ).

    Google Scholar 

  70. Rossby, C.-G., 1947: On the distribution of angular velocity in gaseous envelopes under the influence of large-scale horizontal mixing processes. Bull. Amer. meteor. Soc., 28, 53–68.

    Google Scholar 

  71. Runcorn, S. K., 1954: The earth’s core. Trans. Amer. geophys. Union, 35, 49–63.

    Article  Google Scholar 

  72. Sabin, B. A., 1954: A qualitative study of some of the critical parameters for the “dishpan” model of the atmosphere. Mass. Inst. Tech., B.Sc. thesis.

    Google Scholar 

  73. Sandstrom, J. W., 1919: The hydrodynamics of Canadian Atlantic waters, Canadian Fisheries expedition, 1914–1915. Ottawa, Dept. of Naval Service, 221–343.

    Google Scholar 

  74. Skeib, G., 1953: Modellversuche zur thermischen konvektion. Abh. Met. Hydro. Dienst., 3, 1–56.

    Google Scholar 

  75. Starr, V. P., and R. R. Long, 1953: The flux of angular momentum in rotating model experiments. Geophys. Res. Pap. No. 24, AFCRC, 103–113.

    Google Scholar 

  76. Starr, V. P., 1954: Commentaries concerning research on the general circulation. Tellus, 6, 268–272.

    Article  Google Scholar 

  77. Starr, V. P., and R. M. White, 1951: A hemispherical study of the atmospheric angular momentum balance. Quart. J. r. Meteor. Soc., 77, 215–225.

    Article  Google Scholar 

  78. Starr, V. P., 1954: Balance requirements of the general circulation. Geophys. Res. Pap. No. 35, AFCRC, 57 pp.

    Google Scholar 

  79. Taylor, G. I., 1921: Experiments with rotating fluids. Proc. Cambridge Philosoph. Soc., 20, 326–329.

    Google Scholar 

  80. Taylor, G. I., 1923: Experiments on the motion of solid bodies in rotating fluids. Proc. r. Soc. London, (A), 104, 213–218.

    Article  Google Scholar 

  81. Thiriot, K. H., 1940: Über die laminare Anlaufströmung einer Flüssigkeit über einem rotierenden Boden bei plötzlicher Änderung des Drehungszustandes. Z. Angew. Math. Mech., 20, 1–13.

    Article  Google Scholar 

  82. Thomson, J., 1892, 1857: On the grand currents of atmospheric circulation. Philosoph. Trans. r. Soc. London, (A), 183, 653–684, (1892); Rep. Brit. Assoc., 27, 38–39, (1857).

    Google Scholar 

  83. Univ. of Chicago, Dept. Meteor., 1947: On the general circulation of the atmosphere in middle latitudes. Bull. Amer. meteor. Soc., 28, 225–280.

    Google Scholar 

  84. Vettin, F., 1857: Über den aufsteigenden Luftstrom, die Entstehung des Hagels und der Wirbel-Stürme. Ann. Phys., Lpz., (2), 102, 246–255.

    Article  Google Scholar 

  85. Vettin, F., 1884: Experimentelle Darstellung von Luftbewegungen unter dem Einfluss von Temperatur-Unterschieden und Rotations-Impulsen. Z. Meteor., 1, 227–230, 271–276; (1885) 2, 172–183.

    Google Scholar 

  86. von Arx, W. S., 1952: A laboratory study of the wind driven ocean circulation. Tellus, 4, 311–318.

    Article  Google Scholar 

  87. von Arx, W. S., 1955: An experimental study of the dependence of the primary ocean circulation on the mean zonal wind field. Mass. Inst. Tech., Sc. D. thesis.

    Google Scholar 

  88. von Bezold, W., 1884: Ueber Strömungsfiguren in Flüssigkeiten. K. bair. Acad. Wiss., 4, 569–593.

    Google Scholar 

  89. von Bezold, W., 1887: Experimentaluntersuchungen über rotirende Flüssigkeiten. Ann. Phys. und Chem., (3), 32, 171–187.

    Article  Google Scholar 

  90. Wortman, F. X., 1953: Eine Methode zur Beobachtung und Messung von Wasserströmungen mit Tellur. Z. f. Angew. Physik, 5, 201–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1959 American Meteorological Society

About this chapter

Cite this chapter

Fultz, D., Long, R.R., Owens, G.V., Bohan, W., Kaylor, R., Weil, J. (1959). Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions. In: Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions. Meteorological Monographs, vol 4. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-37-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-37-2_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-37-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics