Skip to main content

Averaging and the Parameterization of Physical Processes in Mesoscale Models

  • Chapter
Mesoscale Meteorology and Forecasting

Abstract

The fundamental equations of motion, and continuity equations for heat and water substance, are basically nonlinear. They contain information concerning atmospheric motion and transport over scales ranging from the largest eddies on the globe down to the very smallest eddies contributing to molecular dissipation. At the present time there is no known mathematical technique for exactly integrating this set of equations. Moreover, feasible observational systems are incapable of resolving or defining all scales of atmospheric motion contributing to the kinetic energy and transport in the atmosphere. Thus, meteorologists have been forced to distinguish between those eddies that are in a sense resolvable, either by observation systems or by some form of finite difference representation of the atmosphere (included are finite element and truncated spectral representations of the atmosphere), and the eddies that are not fully resolved either observationally or computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andre, J. C., G. DeMoor, P. Lacarrere, and R. DuVachat, 1976a: Turbulence approximation for inhomogeneous flows. Part I: The clipping approximation. J. Atmos. Sci., 33, 476–481.

    Article  Google Scholar 

  • Andre, J. C., G. DeMoor, P. Lacarrere, and R. DuVachat, 1976b: Turbulence approximation for inhomogeneous flows. Part II: The numerical simulation of a penetration convection experiment. J. Atmos. Sci., 33, 482–491.

    Article  Google Scholar 

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Beniston, M. G., and G. Sommeria, 1981: Use of a detailed planetary boundary layer model for parameterization purposes. J. Atmos. Sci., 38, 780–797.

    Article  Google Scholar 

  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24, 688–701.

    Article  Google Scholar 

  • Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 19–34.

    Article  Google Scholar 

  • Bougeault, Ph., 1981: Modeling the trade-wind cumulus boundary layer. Part II: A high-order one-dimensional model. J. Atmos. Sci., 38, 2429–2439.

    Article  Google Scholar 

  • Boussinesq, J., 1877: Essai sur la théorie des eaux courantes. Mém. Prés. Acad. Sci. Paris, 23, 24–46.

    Google Scholar 

  • Burk, S. D., 1981: An operational turbulence closure model forecast system. Preprints, 5th Conference on Numerical Weather Prediction, Monterey, Calif., American Meteorological Society, Boston, 309–315.

    Google Scholar 

  • Chen, C., 1984: The physics of the marine stratocumulus-capped mixed layer. Ph.D. dissertation, Colorado State University, Dept. of Atmospheric Sciences, Fort Collins.

    Google Scholar 

  • Chen, C., and W. R. Cotton, 1983: A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor., 25, 289–321.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1987: The Dynamics of Clouds and Precipitating Mesoscale Systems. Academic Press, New York (to be published).

    Google Scholar 

  • Cotton, W. R., and G. J. Tripoli, 1978: Cumulus convection in shear flow—Three dimensional numerical experiments. J. Atmos. Sci., 35, 1503–1521.

    Article  Google Scholar 

  • Deardorff, J. W., 1970: A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn., 1, 377–410.

    Article  Google Scholar 

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527.

    Article  Google Scholar 

  • Frank, W. M., 1983: The cumulus parameterization problem. Mon. Wea. Rev., 111, 1859–1871.

    Google Scholar 

  • Gillespie, D. T., 1975: Three models for the coalescence growth of cloud drops. J. Atmos. Sci, 32, 600–607.

    Article  Google Scholar 

  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646–673.

    Article  Google Scholar 

  • Hinze, J. 0., 1975: Turbulence. Second edition, McGraw-Hill, New York, 790 pp.

    Google Scholar 

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of ma- ture hurricanes. Ph.D. dissertation, Col- orado State University, Fort Collins, 189 pp.

    Google Scholar 

  • Kessler, E., III, 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr. 10, American Meteorological Society, Boston, 84 pp.

    Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097–1110.

    Article  Google Scholar 

  • Leonard, A., 1974: Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in Geophysics, 18A, Academic Press, New York, 237–248.

    Google Scholar 

  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proceedings, IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, N.Y., 195–210.

    Google Scholar 

  • Manton, M. J., and W. R. Cotton, 1977: Parameterization of the atmospheric surface layer. J. Atmos. Sci., 34(2), 331334.

    Google Scholar 

  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Miller, M. J., and R. P. Pearce, 1974: A three-dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor., 100, 133–154.

    Article  Google Scholar 

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere (in Russian). Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163–187.

    Google Scholar 

  • Ogura, Y., and H. Cho, 1973: Diagnostic determination of cumulus cloud populations from observed large-scale variables. J. Atmos. Sci., 30, 1276–1286.

    Article  Google Scholar 

  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. Wiley, New York, 397 pp.

    Google Scholar 

  • Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated thunderstorm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–420.

    Article  Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. 1: The basic experiment. Mon. Wea. Rev., 91, 99–164.

    Article  Google Scholar 

  • Sommeria, G., 1976: Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci. 33, 216–241.

    Article  Google Scholar 

  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19, 1037–1063.

    Article  Google Scholar 

  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449–457.

    Article  Google Scholar 

  • Warner, J., 1970: The microstructure of cumulus cloud. Part III: The nature of the updraft. J. Atmos. Sci., 27, 611–627.

    Google Scholar 

  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Article  Google Scholar 

  • Zeman, O., and J. L. Lumley, 1976: Modeling buoyancy-driven mixed layers. J. Atmos. Sci., 33, 1974–1988.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Cotton, W.R. (1986). Averaging and the Parameterization of Physical Processes in Mesoscale Models. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_26

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics