Skip to main content

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

Perhaps as in no other area of meteorology, radar has proven to be the key tool in modern detection and forecasting, as well as in identifying and understanding the physics, of convective storms and convective systems. From its initial deployment as a research tool following the second World War [see the excellent review of the history of radar meteorology in chapter 1 of the AMS monograph Radar in Meteorology, edited by Dave Atlas (Fletcher 1990)], radar has played a fundamental role in increasing our understanding of the forces that initiate and organize severe storms and larger convective systems that are composed of a conglomeration of convective storm cells. Early radar observations were primarily descriptive and showed the tremendous variety of types and sizes of precipitating moist convection (see reviews by Browning 1990; Parsons et al. 1990; Ray 1990; Carbone et al. 1990b; Smull 1995). Examples of types include single convective storms, longer-lived multicellular storms, fast-moving squall lines, slower-moving linear and nonlinear convective systems, and long-lived supercell storms. Although this review emphasizes the role played by radar in observational studies of convective storms and systems, the ever-increasing use of numerical models in explaining the dynamics of precipitating convective systems has resulted in the inclusion of many of those studies. Moreover, we believe numerical models will play an increasing role in extending our understanding of these phenomena by providing information on variables and in areas that are unobserved by radar and other instruments. Likewise, the accuracy of simulations that involve unavoidable parameterization of unresolved or poorly understood physics must be verified against data from the same observing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtemeier, G. L., 1983: The relationship between the surface wind field and convective precipitation over the St. Louis area. J. Appl. Meteor., 22, 982–999.

    Article  Google Scholar 

  • Achtemeier, G. L., 1991: The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar. J. Atmos. Oceanic Technol., 8, 746–765.

    Article  Google Scholar 

  • Alexander, G. D., and G. S. Young, 1992: The relationship between EMEX mesoscale precipitation feature properties and their environmental characteristics. Mon. Wea. Rev., 120, 554–564.

    Article  Google Scholar 

  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125.

    Article  Google Scholar 

  • Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 2112–2130.

    Article  Google Scholar 

  • Atkins, N. T., and T M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–969.

    Article  Google Scholar 

  • Atkins, N. T., and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525–550.

    Article  Google Scholar 

  • Atlas, D., 1960: Radar detection of the sea breeze. J. Meteor., 17, 244–258.

    Article  Google Scholar 

  • Augustine, J. A., and E Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting., 9, 116–135.

    Article  Google Scholar 

  • Austin, G. R., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1996: Trade-wind clouds and Hawaiian rainbands. Mon. Wea. Rev., 124, 2126–2151.

    Article  Google Scholar 

  • Baker, R. D., B. H. Lynn, A. Boone, W.-K. Tao, and J. Simpson, 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2, 193–211.

    Article  Google Scholar 

  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 3188–3211.

    Article  Google Scholar 

  • Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476.

    Article  Google Scholar 

  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782–1794.

    Article  Google Scholar 

  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104–118.

    Article  Google Scholar 

  • Bartels, D. L., J. M. Brown, and E. J. Tollerud, 1997: Structure of a midtro-pospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev., 125, 193–211.

    Article  Google Scholar 

  • Bernardet, L. R., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126, 2991–3015.

    Article  Google Scholar 

  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3034–3065.

    Article  Google Scholar 

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732.

    Article  Google Scholar 

  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121, 1354 1372.

    Google Scholar 

  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically sim-ulated supercells initiated along lines. Mon. Wea. Rev., 128, 3128–3149.

    Article  Google Scholar 

  • Bluestein, H. B., and R M Wakimoto, 2003: Mobile radar observations of severe convective systems. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 105–136.

    Google Scholar 

  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas, storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.

    Article  Google Scholar 

  • Bluestein, H. B., R. L. Walko, and R. P. Davies-Jones, 1990: An observational study of splitting convective clouds. Mon. Wea. Rev., 118, 1359–1370.

    Article  Google Scholar 

  • Bosart, L. E, W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Wea. Rev., 126, 1497–1527.

    Article  Google Scholar 

  • Braun, S. A., and R. A. Houze Jr., 1997: The evolution of the 1011 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation. Mon. Wea. Rev., 125, 478–504.

    Article  Google Scholar 

  • Braun, S. A., and B. F. Smull, 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific northwest coast. Mon. Wea. Rev., 125, 3131–3156.

    Article  Google Scholar 

  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 1824–1833.

    Article  Google Scholar 

  • Brown, S. A., J. D. Locatelli, and P. V. Hobbs, 1998: Organization of precipitation along cold fronts. Quart. J. Roy. Meteor. Soc., 124, 649–652.

    Article  Google Scholar 

  • Brown, S. A., M. T Stoelinga, and P. V. Hobbs, 1999: Numerical mod-eling of precipitation cores on cold fronts. J. Atmos. Sci., 56, 1175–1196.

    Article  Google Scholar 

  • Browning, K. A., 1985: Conceptual models of precipitating systems. Meteor. Mag., 114, 293–319.

    Google Scholar 

  • Browning, K. A., 1990: Organization and internal structure of synoptic and me-soscale precipitation systems in midlatitudes. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 433–460.

    Google Scholar 

  • Browning, K. A., 2003: Mesoscale substructure of extratropical cyclones ob-served by radar. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 7–32.

    Google Scholar 

  • Browning, K. A., and N. M. Roberts, 1996: Variation of frontal and precipitation structure along a cold front. Quart. J. Roy. Meteor. Soc., 122, 1845–1872.

    Article  Google Scholar 

  • Businger, S., W. H. Bauman, and G. F. Watson, 1991: The development of the Piedmont front and associated outbreak of severe weather on 13 March 1986. Mon. Wea. Rev., 119, 2224–2251.

    Article  Google Scholar 

  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

    Google Scholar 

  • Carbone, R. E., 1982: Severe frontal rainband. Part 1: Stormwide dynamic structure. J. Atmos. Sci., 39, 258–279.

    Article  Google Scholar 

  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990a: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 26–49.

    Article  Google Scholar 

  • Carbone, R. E., and Coauthors, 1990b: Convective dynamics: Panel report. Ra-dar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 391400.

    Google Scholar 

  • Carbone, R. E., W. A. Cooper, and W. C. Lee, 1995: On the forcing of flow reversal along the windward slopes of Hawaii. Mon. Wea. Rev., 123, 3416–3480.

    Article  Google Scholar 

  • Carbone, R. E., J. D. Tuttle, W. A. Cooper, V. Grubisic, and W. C. Lee, 1998: Trade wind rainfall near the windward coast of Hawaii. Mon. Wea. Rev., 126, 2847–2863.

    Article  Google Scholar 

  • Carbone, R. E., J. W. Wilson, T D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128, 3459–3480.

    Article  Google Scholar 

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140–156.

    Article  Google Scholar 

  • Chin, H.-N. S., and R. B. Wilhelmson, 1998: Evolution and structure of tropical squall line elements within a moderate CAPE and strong low-level jet environment. J. Atmos. Sci., 55, 3089–3133.

    Article  Google Scholar 

  • Chong, M., and O. Bousquet, 1999: A mesovortex within a near-equatorial mesoscale convective system during TOGA COARE. Mon. Wea. Rev., 127, 1145–1156.

    Article  Google Scholar 

  • Christian, T W., and R. M. Wakimoto, 1989: The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982. Mon. Wea. Rev., 117, 1530–1544.

    Article  Google Scholar 

  • Church, C., D. Burgess, C. Doswell, and R. Davies-Jones, Eds., 1993: The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 637 pp.

    Chapter  Google Scholar 

  • Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part II: Organization and instability mechanisms. Mon. Wea. Rev., 118, 1123–1144.

    Article  Google Scholar 

  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev., 125, 463–477.

    Article  Google Scholar 

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1768–1785.

    Article  Google Scholar 

  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1991: The Denver Cyclone. Part II: Interaction with the convective boundary layer. J. Atmos. Sci., 48, 2109–2126.

    Article  Google Scholar 

  • Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878.

    Article  Google Scholar 

  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 2005–2030.

    Article  Google Scholar 

  • Doswell, C. A., III, H. E. Brooks, and R. A, Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Article  Google Scholar 

  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variation. J. Atmos. Sci., 42, 2381–2403.

    Article  Google Scholar 

  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geophys. Publ., 27, 1–15.

    Google Scholar 

  • Emanuel, K. A., 1986: Some dynamical aspects of precipitating convection. J. Atmos. Sci., 43, 2183–2198.

    Article  Google Scholar 

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

    Google Scholar 

  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342.

    Article  Google Scholar 

  • Fankhauser, J. C., N. A. Crook, J, Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291–313.

    Google Scholar 

  • Fletcher, J. 0., 1990: Early developments of weather radar during World War II. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 3–6.

    Google Scholar 

  • Fovell, R. G., and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 2057–2072.

    Article  Google Scholar 

  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807.

    Article  Google Scholar 

  • Fujita, T. T., 1978: Manual of downburst identification for project Nimrod. Satellite and Mesometeorology Res. Pap. 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp. [NTIS PB-286048. 1

    Google Scholar 

  • Gallus, W. A., Jr., and R. H. Johnson, 1995: The dynamics of circulations within the trailing stratiform regions of squall lines. Part II: Influence of the convective line and ambient environment. J. Atmos. Sci., 52, 2188–2211.

    Article  Google Scholar 

  • Garstang, M., and H. J. Cooper, 1981: The role of near surface outflow in maintaining convective activity. Proc. Nowcasting-I Symp., Copenhagen, Denmark, European Space Agency, 161–168.

    Google Scholar 

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.

    Article  Google Scholar 

  • Grady, R. L., and J. Verlinde, 1997: Triple Doppler analysis of a discretely propagating, long-lived, high-plains squall line. J. Atmos. Sci., 54, 2729–2748.

    Article  Google Scholar 

  • Grossman, R. L., 1982: An analysis of vertical velocity spectra ob-tained in the BOMEX fair-weather, trade-wind boundary layer. Bound.-Layer Meteor., 23, 323–357.

    Article  Google Scholar 

  • Hane, C. E., and D. P. Jorgensen, 1995: Dynamic aspects of a distinctly three-dimensional mesoscale convective system. Mon. Wea. Rev., 123, 3194–3214.

    Article  Google Scholar 

  • Hane, C. E., C. J. Kessinger, and P S. Ray, 1987: The Oklahoma squall line of 19 May 1977. Part II: Mechanisms for maintenance of the region of strong convection. J. Atmos. Sci., 44, 2866–2886.

    Article  Google Scholar 

  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 2133–2145.

    Article  Google Scholar 

  • Hane, C. E., H. B. Bluesein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231–251.

    Article  Google Scholar 

  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dry-line motion and an Eta Model forecast. Mon. Wea. Rev., 129, 2183–2204.

    Article  Google Scholar 

  • R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E.

    Google Scholar 

  • Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convection initiation. Mon. Wea. Rev., 130, 900–920.

    Article  Google Scholar 

  • Hertzman, O., and P. V. Hobbs, 1988: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part XIV: Three-dimensional airflow and vorticity budget of rainbands in a warm occlusion. J. Atmos. Sci., 45, 893–914.

    Article  Google Scholar 

  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138–150.

    Article  Google Scholar 

  • Hobbs, P V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part V: The substructure of narrow cold frontal rainbands. J. Atmos. Sci., 39, 280–295.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1981: Structure of atmospheric precipitation systems—A global survey. Radio Sci., 16, 671–689.

    Article  Google Scholar 

  • Houze, R. A., and P. V. Hobbs, 1982: Organization and structure of precip-itating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315.

    Google Scholar 

  • Houze, R. A., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: In-terpretation of Doppler weather radar displays of midlatitude mesoscale convective system. Bull. Amer. Meteor. Soc., 70, 608619.

    Google Scholar 

  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654.

    Article  Google Scholar 

  • Intrieri, J. M., A. J. Bedard, and R. M. Hardesty, 1990: Details of colliding thunderstorm outflows as observed by Doppler lidar. J. Atmos. Sci., 47, 1081–1098.

    Article  Google Scholar 

  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convec-tively induced windstorms. Wea. Forecasting, 2, 32–49.

    Article  Google Scholar 

  • Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. 2: Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 583–590.

    Chapter  Google Scholar 

  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 1917–1940.

    Article  Google Scholar 

  • Jorgensen, D. P., and B. E Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale con-vective system. Bull. Amer. Meteor. Soc., 74, 2146–2157.

    Article  Google Scholar 

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621–644.

    Article  Google Scholar 

  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys., 59, 83–104.

    Article  Google Scholar 

  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 1961–1985.

    Article  Google Scholar 

  • Jorgensen, D. P., Z. Pu, P. O. G. Persson, and W-K. Tao, 2003: Variations associated with cores and gaps of a pacific narrow cold frontal rainband. Mon. Wea. Rev. in press.

    Google Scholar 

  • Joseph, J. H., and R. F. Cahalan, 1990: Nearest neighbor spacing of fair weather cumulus clouds. J. Appl. Meteor., 29, 793–805.

    Article  Google Scholar 

  • Kessinger, C. J., and C. K. Mueller, 1991: Background studies and nowcasting Florida thunderstorm activity in preparation for the CaPOW forecast experiment. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 67–70.

    Google Scholar 

  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 2913–2933.

    Article  Google Scholar 

  • Kingsmill, D. E., and R. M. Wakimoto, 1991: Kinematic, dynamic, and ther-modynamic analysis of a weakly sheared severe thunderstorm over northern Alabama. Mon. Wea. Rev., 119, 262–297.

    Article  Google Scholar 

  • Knupp, K. R., B. Geerts, and S. J. Goodman, 1998: Analysis of a small, vigorous mesoscale convective system in a low-shear environment. Part I: Formation, radar echo structure, and lightning behavior. Mon. Wea. Rev., 126, 1812–1836.

    Article  Google Scholar 

  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary layer forcing of mesoconvective systems. J. Atmos. Sci., 39, 237–257.

    Article  Google Scholar 

  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 56–77.

    Article  Google Scholar 

  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 2862–2890.

    Article  Google Scholar 

  • Kuettner, J. P, 1959: The band structure of the atmosphere. Tellus, 11, 267–294.

    Article  Google Scholar 

  • Kuo, J.-T., and H. D. Orville, 1973: A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteor., 12, 357–368.

    Article  Google Scholar 

  • Lafore, J., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521–544.

    Article  Google Scholar 

  • Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 2756–2776.

    Article  Google Scholar 

  • Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 2942–2956.

    Article  Google Scholar 

  • Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48, 2350–2366.

    Article  Google Scholar 

  • Lemaitre, Y., G. Scialom, and P Amayenc, 1989: A cold frontal rainband observed during the LANDES-FRONTS 84 experiment: Mesoscale and small-scale structure inferred from dual-Doppler radar analysis. J. Atmos. Sci., 46, 2215–2235.

    Article  Google Scholar 

  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 1077–1091.

    Article  Google Scholar 

  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524–539.

    Article  Google Scholar 

  • LeMone, M. A., and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281–305.

    Article  Google Scholar 

  • LeMone, M. A., G. M. Barnes, E. J. Szoke, and E. J. Zipser, 1984: The tilt of the leading edge of mesoscale tropical convective lines. Mon. Wea. Rev., 112, 510–519.

    Article  Google Scholar 

  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493–3518.

    Article  Google Scholar 

  • Lewis, S. A., M. A. LeMone, and D. P. Jorgensen, 1998: Evolution and dynamics of a late-stage squall line that occurred on 20 February 1993 during TOGA COARE. Mon. Wea. Rev., 126, 3189–3212.

    Article  Google Scholar 

  • Ligda, M. G. H., 1956: The radar observation of mature prefrontal squall lines in the Midwestern United States. Swiss Aero Rev., 11 /12, 153–155.

    Google Scholar 

  • Lindzen, R. S., and K. K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 1602–1617.

    Article  Google Scholar 

  • Locatelli, J. D., J. E. Martin, and P. V. Hobbs, 1995: Development and propagation of precipitation cores on cold fronts. Atmos. Res., 38, 177–206.

    Article  Google Scholar 

  • Locatelli, J. D., M. T. Stoelinga, and P V. Hobbs, 1998: Structure and evolution of winter cyclones in the central United States and their effect of the distribution of precipitation. Part V: Thermodynamic and dual-Doppler radar analysis of a squall line associated with a cold front aloft. Mon. Wea. Rev., 126, 860–875.

    Article  Google Scholar 

  • Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective system. Mon. Wea. Rev., 123, 600–621.

    Article  Google Scholar 

  • Lopez, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 1288–1312.

    Article  Google Scholar 

  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 3183–3193.

    Article  Google Scholar 

  • Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 1474–1491.

    Article  Google Scholar 

  • Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 29–56.

    Article  Google Scholar 

  • May, P. T., 1999: Thermodynamic and vertical velocity structure of two gust fronts observed with a wind profiler/RASS during MCTEX. Mon. Wea. Rev., 127, 1796–1807.

    Article  Google Scholar 

  • McCarthy, J., and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A mesoscale and subsynoptic-scale analysis. J. Atmos. Sci., 39, 225–236.

    Article  Google Scholar 

  • McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane tornado environments. Mon. Wea. Rev., 119, 1954–1978.

    Article  Google Scholar 

  • McCaul, E. W., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408–429.

    Article  Google Scholar 

  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated su-percell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664–687.

    Article  Google Scholar 

  • Menard, R. D., and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 1237–1261.

    Article  Google Scholar 

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373–394.

    Article  Google Scholar 

  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 1879–1898.

    Article  Google Scholar 

  • Neumann, J., 1951: Land breezes and nocturnal thunderstorms. J. Meteor., 8, 60–67.

    Article  Google Scholar 

  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 1869–1884.

    Article  Google Scholar 

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436.

    Article  Google Scholar 

  • Parsons, D. B., C. G. Mohr, and T. Gal-Chen, 1987: A severe frontal rainband. Part III: Derived thermodynamic structure. J. Atmos. Sci., 44, 1615–1631.

    Article  Google Scholar 

  • Parsons, D. B., B. F. Smull, and D. K. Lilly, 1990: Mesoscale organization and processes: Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 461–476.

    Google Scholar 

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 1242–1258.

    Article  Google Scholar 

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea-breezes over south Florida. Mon. Wea. Rev., 102, 115–139.

    Article  Google Scholar 

  • Pielke, R. A., and Y. Mahrer, 1978: Verification analysis of the University of Virginia three-dimensional mesoscale model prediction over south Florida for 1 July 1973. Mon. Wea. Rev., 106, 1568–1589.

    Article  Google Scholar 

  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203–218.

    Article  Google Scholar 

  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474–1483.

    Article  Google Scholar 

  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

    Google Scholar 

  • Purdom, J. F. W., and K. Marcus, 1982: Thunderstorm trigger mechanisms over the southeast U.S. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 487–488.

    Google Scholar 

  • Rao, P. A., H. E. Fuelberg, and K. K. Droegemeier, 1999: High-resolution modeling of the Cape Canaveral area land-water circulations and associated features. Mon. Wea. Rev., 127, 1808 1821.

    Google Scholar 

  • Ray, P. S., 1990: Convective dynamics. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 348–390.

    Chapter  Google Scholar 

  • Raymond, D. J., and M. H. Wilkening, 1982: Flow and mixing in New Mexico mountain cumuli. J. Atmos. Sci., 39, 2211–2228.

    Article  Google Scholar 

  • Redelsperger, J.-L., and T. L. Clark, 1990: The initiation and horizontal scale selection of convection over gently sloping terrain. J. Atmos. Sci., 47, 516–541.

    Article  Google Scholar 

  • Reinking, R. E, R. J. Doviak, and R. O. Gilmer, 1981: Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar. J. Appl. Meteor., 20, 678–685.

    Article  Google Scholar 

  • Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor., 5, 58–63.

    Article  Google Scholar 

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

    Article  Google Scholar 

  • Roux, E, V. Marécal, and D. Hauser, 1993: The 12/13 January 1988 narrow cold-frontal rainband observed during MFDP/FRONTS 87. Part I: Kinematics and thermodynamics. J. Atmos. Sci., 50, 951–974.

    Article  Google Scholar 

  • Rutledge, S. A., 1986: A diagnostic modeling study of the stratiform region associated with a tropical squall line. J. Atmos. Sci., 43, 1356–1377.

    Article  Google Scholar 

  • Sanders, E, and L. E Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Fronto-genetical forcing and symmetric instability. J. Atmos. Sci., 42, 1050–1061.

    Article  Google Scholar 

  • Sanders, E, and D. O. Blanchard, 1993: The origin of a severe thunderstorm in Kansas on 10 May 1985. Mon. Wea. Rev., 121, 133–149.

    Article  Google Scholar 

  • Schaaf, C. B., J. Wurman, and R. M. Banta, 1988: Thunderstorm-producing terrain features. Bull. Amer. Meteor. Soc., 69, 272–277.

    Article  Google Scholar 

  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

    Chapter  Google Scholar 

  • Schiesser, H. H., R. A. Houze Jr., and H. Huntrieser, 1995: The mesoscale structure of severe precipitation systems in Switzerland. Mon. Wea. Rev., 123, 2070–2097.

    Article  Google Scholar 

  • Schlesinger, R. E., 1982: Three-dimensional numerical modeling of convective storms: A review of milestones and challenges. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 506–515.

    Google Scholar 

  • Scott, J. D., and S. A. Rutledge, 1995: Doppler radar observations of an asymmetric mesoscale convective system and associated vortex couplet. Mon. Wea. Rev., 123, 3437–3457.

    Article  Google Scholar 

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604.

    Article  Google Scholar 

  • Seitter, K. L., 1986: A numerical study of atmospheric density current motion including the effect of condensation. J. Atmos. Sci., 43, 3068–3076.

    Article  Google Scholar 

  • Sha, W., T. Kawamura, and H. Ueda, 1991: A numerical study on sea/land breezes as a gravity current: Kelvin—Helmholtz billows and inland penetration of the sea-breeze front. J. Atmos. Sci., 48, 1649–1665.

    Article  Google Scholar 

  • Shields, M. T., R. M. Rauber, and M. K. Ramamurthy, 1991: Dynamical forcing and mesoscale organization of precipitation bands in a Midwest winter cyclonic storm. Mon. Wea. Rev., 119, 936–964.

    Article  Google Scholar 

  • Simpson, J. E., 1994: Sea Breeze and Local Wind. Cambridge University Press, 234 pp.

    Google Scholar 

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 1872–1905.

    Article  Google Scholar 

  • Smull, B. F., 1995: Convectively-induced mesoscale weather systems in the tropical and warm-season midlatitude atmosphere. Rev. Geophys., 33 (Suppl.), 897–906.

    Article  Google Scholar 

  • Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133.

    Article  Google Scholar 

  • Smull, B. F., and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121, 103–132.

    Article  Google Scholar 

  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709–727.

    Article  Google Scholar 

  • Stensrud, D. J., 1996a: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 3503–3527.

    Article  Google Scholar 

  • Stensrud, D. J., 1996b: Importance of low-level jets to climate: A review. J. Climate, 9, 1698–1711.

    Article  Google Scholar 

  • Stensrud, D. J., and R. A. Maddox, 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189–204.

    Article  Google Scholar 

  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weak-ly forced large-scale environments. Part II: Generation of mesoscale initiation condition. Mon. Wea. Rev., 122, 2068–2083.

    Article  Google Scholar 

  • Stensrud, D. J., G. S. Manikin, E. Rogers, and K. E. Mitchell, 1999: Importance of cold pools to NCEP mesoscale Eta Model forecasts. Wea. Forecasting, 14, 650–670.

    Article  Google Scholar 

  • Szoke, E. J., M. L. Weisman, J. M. Brown, E Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790–808.

    Article  Google Scholar 

  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54, 369–385.

    Article  Google Scholar 

  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Meteor. Soc., 108, 739–762.

    Article  Google Scholar 

  • Trier, S. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organizational mechanisms inferred from numerical simulations. J. Atmos. Sci., 54, 386–407.

    Article  Google Scholar 

  • Trier, S. B., C. A. Davis, and W. C. Skamarock, 2000: Long-lived meso-convective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396–3412.

    Article  Google Scholar 

  • Ulanski, S. L., and M. Garstang, 1978: The role of surface divergence and vorticity in the life cycle of convective rainfall. Part I: Observations and analysis. J. Atmos. Sci., 35, 1047–1062.

    Article  Google Scholar 

  • Verlinde, J., and W. R. Cotton, 1990: A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev., 118, 993–1010.

    Article  Google Scholar 

  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.

    Article  Google Scholar 

  • Wakimoto, R. M., and N. T. Atkins, 1994: Observations of the sea-breeze front during CaPE. Part I: Single-Doppler, satellite, and cloud pho-togrammetric analysis. Mon. Wea. Rev., 122, 1092–1114.

    Article  Google Scholar 

  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128, 2447–2470.

    Article  Google Scholar 

  • Watson, I. W., and D. O. Blanchard, 1984: The relationship between total area divergence and convective precipitation in south Florida. Mon. Wea. Rev., 112, 673–685.

    Article  Google Scholar 

  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030.

    Article  Google Scholar 

  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 2169–2187.

    Article  Google Scholar 

  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769–784.

    Article  Google Scholar 

  • Weckwerth, T. M., and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505–526.

    Article  Google Scholar 

  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.

    Article  Google Scholar 

  • Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82, 97–116.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically sim-ulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    Article  Google Scholar 

  • Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622.

    Article  Google Scholar 

  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.

    Article  Google Scholar 

  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual-Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev., 130, 1207–1226.

    Article  Google Scholar 

  • Wilson, J. W., and R. Carbone, 1984: Nowcasting with Doppler radar: The forecaster–computer relationship. Nowcasting II, K. Browning, Ed., European Space Agency, 177–186.

    Google Scholar 

  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.

    Article  Google Scholar 

  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113–131.

    Article  Google Scholar 

  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, orga-nization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 1507–1525.

    Article  Google Scholar 

  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection initiation and downburst experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 1328–1348.

    Article  Google Scholar 

  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 1785–1815.

    Article  Google Scholar 

  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 1184–1206.

    Article  Google Scholar 

  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099.

    Google Scholar 

  • Wilson, J. W., R. E. Carbone, J. D. Tuttle, and T. D. Keenan, 2001: Tropical island convection in the absence of significant topography. Part II: Nowcasting storm evolution. Mon. Wea. Rev., 129, 1637–1655.

    Article  Google Scholar 

  • Yu, C.-K., B. J.-D. Jou, and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127, 838–857.

    Article  Google Scholar 

  • Zhang, D. L., and J. M. Fritsch, 1988: A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution. Mon. Wea. Rev., 116, 2660–2687.

    Article  Google Scholar 

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 1106–1131.

    Article  Google Scholar 

  • Ziegler, C. L., T J. Lee, and R. A. Pielke Sr., 1997: Convection initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 1001–1026.

    Article  Google Scholar 

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589.

    Article  Google Scholar 

  • Zipser, E. J., 1982: Use of a conceptual model of the life cycle of mesoscale convective systems to improve very-short-range forecasts. Now-casting, K. Browning, Ed., Academic Press, 191–204.

    Google Scholar 

  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 2458–2469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Meteorological Society

About this chapter

Cite this chapter

Jorgensen, D.P., Weckwerth, T.M. (2003). Forcing and Organization of Convective Systems. In: Wakimoto, R.M., Srivastava, R. (eds) Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-878220-36-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-878220-36-3_4

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-878220-36-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics