Skip to main content

Clustering and Segmentation

  • Chapter
Discrete Calculus
  • 3425 Accesses

Abstract

Clustering algorithms are used to find communities of nodes that all belong to the same group. This grouping process is also known as image segmentation in image processing. The clustering problem is also deeply connected to machine learning because a solution to the clustering problem may be used to propagate labels from observed data to unobserved data. In general network analysis, the identification of a grouping allows for the analysis of the nodes within each group as separate entities. In this chapter, we use the tools of discrete calculus to examine both the targeted clustering problem (i.e., finding a specific group) and the untargeted clustering problem (i.e., discovering all groups). We additionally show how to apply these clustering models to the clustering of higher-order cells, e.g., to cluster edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the rest of this chapter we treated the data as univariate in order to simplify the exposition, with the understanding that all of the machinery could also be applied to multivariate data. However, since k-means is almost exclusively applied to multivariate data we have adopted a multivariate view of data in this section. Therefore, it is assumed that each node (data point) is associated with a tuple of data, rather than a scalar.

  2. 2.

    Some authors have tried to incorporate spatial location into k-means by using the pixel coordinates as part of the feature vector in the application of k-means. This device can mitigate the problem described here in certain circumstances, but does not generalize to applications in which the network has no embedding or when the embedding is complicated, as in the gene expression example in Sect. 6.5.4 or the geospatial example in Sect. 5.9.4.

References

  1. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: Proc. of the 23rd Int. Conf. on Mach. Learn., vol. 148, pp. 17–24 (2006)

    Google Scholar 

  2. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min cuts, optimal spanning forests and watersheds. In: Proc. of ISMM’07, vol. 2, pp. 253–264 (2007)

    Google Scholar 

  3. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Machine Learning 75(2), 245–248 (2009)

    Article  Google Scholar 

  4. Alvino, C.V., Unal, G.B., Slabaugh, G., Peny, B., Fang, T.: Efficient segmentation based on Eikonal and diffusion equations. International Journal of Computer Mathematics 84(9), 1309–1324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 106–118 (2006)

    Article  Google Scholar 

  6. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bulletin of the American Mathematical Society 41(4), 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arora, S., Rao, S., Vazirani, U.: Geometry, flows, and graph-partitioning algorithms. Communications of the ACM 51(10), 96–105 (2008)

    Article  Google Scholar 

  8. Bae, E., Tai, X.C.: Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In: Proc. of the International Conference of Scale Space and Variational Methods in Computer Vision, pp. 1–13 (2009)

    Google Scholar 

  9. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: ICCV (2007)

    Google Scholar 

  10. Bengio, Y., Delalleau, O., Roux, N.L., Paiement, J.F., Vincent, P., Ouimet, M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation 16(10), 2197–2219 (2004)

    Article  MATH  Google Scholar 

  11. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In: Proc. of NIPS, pp. 177–184 (2004)

    Google Scholar 

  12. Bohland, J., Bokil, H., Pathak, S., Lee, C., Ng, L., Lau, C., Kuan, C., Hawrylycz, M., Mitra, P.: Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50(2), 105–112 (2010)

    Article  Google Scholar 

  13. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. of ICCV 2001, pp. 105–112 (2001)

    Google Scholar 

  14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  15. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  16. Bruckstein, A.M., Netravali, A.N., Richardson, T.J.: Epi-convergence of discrete elastica. Applicable Analysis 79(1–2), 137–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  18. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  19. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  20. Chen, Y., Dong, M., Rege, M.: Gene expression clustering: A novel graph partitioning approach. In: Proceedings of International Joint Conference on Neural Networks (2007)

    Google Scholar 

  21. Chung, F.R.K.: The Laplacian of a hypergraph. In: Proc. of a DIMACS Workshop, Discrete Math. Theoret. Comput. Sci., vol. 10, pp. 21–36. Am. Math. Soc., Providence (1993)

    Google Scholar 

  22. Chung, F.R.K.: Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  23. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  24. Cohen, L., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)

    Article  Google Scholar 

  25. Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences of the United States of America 102(21), 7426–7431 (2005)

    Article  Google Scholar 

  26. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: Proc. of ICCV, pp. 731–738 (2009)

    Google Scholar 

  27. Criminisi, A., Sharp, T., Blake, A.: GeoS: Geodesic image segmentation. In: Proc. of ECCV, pp. 99–112 (2008)

    Google Scholar 

  28. Darbon, J.: A note on the discrete binary Mumford–Shah model. In: Proc. of the 3rd Int. Conf. on Computer Vision/Computer Graphics Collaboration Techniques. Lecture Notes in Computer Science, pp. 283–294. Springer, Berlin (2007)

    Chapter  Google Scholar 

  29. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: Fast and exact optimization. Journal of Mathematical Imaging and Vision 26(3), 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  30. Dheeraj Singaraju, L.G., Vidal, R.: P-brush: Continuous valued MRFs with normed pairwise distributions for image segmentation. In: Proc. of CVPR 2009. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  31. Donath, W., Hoffman, A.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bulletin 15, 938–944 (1972)

    Google Scholar 

  32. El-Zehiry, N., Xu, S., Sahoo, P., Elmaghraby, A.: Graph cut optimization for the Mumford–Shah model. In: Proc. of VIIP (2007)

    Google Scholar 

  33. El-Zehiry, N.Y., Elmaghraby, A.: Brain MRI tissue classification using graph cut optimization of the Mumford–Shah functional. In: Proceedings of Image and Vision Computing, New Zealand, pp. 321–326 (2007)

    Google Scholar 

  34. Falcão, A.X., Lotufo, R.A., Araujo, G.: The image foresting transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)

    Article  Google Scholar 

  35. Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Elliot, B.H., de Lotufo, A.R.: User-steered image segmentation paradigms: Live wire and live lane. Graphical Models and Image Processing 60(4), 233–260 (1998)

    Article  Google Scholar 

  36. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23(98), 298–305 (1973)

    MathSciNet  Google Scholar 

  37. Fiedler, M.: Eigenvectors of acyclic matrices. Czechoslovak Mathematical Journal 25(100), 607–618 (1975)

    MathSciNet  Google Scholar 

  38. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Mathematical Journal 25(100), 619–633 (1975)

    MathSciNet  Google Scholar 

  39. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  40. Girvan, M., Newman, M.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grady, L.: Multilabel random walker image segmentation using prior models. In: Proc. of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, vol. 1, pp. 763–770. IEEE Press, San Diego (2005)

    Google Scholar 

  42. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  43. Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2), 321–334 (2010)

    Article  Google Scholar 

  44. Grady, L., Alvino, C.: The piecewise smooth Mumford-Shah functional on an arbitrary graph. IEEE Transactions on Image Processing 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  45. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 469–475 (2006)

    Article  Google Scholar 

  46. Grady, L., Schwartz, E.L.: Isoperimetric partitioning: A new algorithm for graph partitioning. SIAM Journal on Scientific Computing 27(6), 1844–1866 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society. Series B 51(2), 271–279 (1989)

    Google Scholar 

  48. Guattery, S., Miller, G.: On the quality of spectral separators. SIAM Journal on Matrix Analysis and Applications 19(3), 701–719 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Science 17(3), 219–229 (1970)

    Article  MATH  Google Scholar 

  50. Harrison, L.M., Penny, W., Flandin, G., Ruff, C.C., Weiskopf, N., Friston, K.J.: Graph-partitioned spatial priors for functional magnetic resonance images. NeuroImage 43(4), 694–707 (2008)

    Article  Google Scholar 

  51. Higham, D., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. Journal of Computational and Applied Mathematics 204(1), 25–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  53. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  54. Kavitha, S., Roomi, S., Ramaraj, N.: Lossy compression through segmentation on low depth-of-field images. Digital Signal Processing 19(1), 59–65 (2009)

    Article  Google Scholar 

  55. Khaira, M.S., Miller, G.L., Sheffler, T.J.: Nested dissection: A survey and comparison of various nested dissection algorithms. Technical Report CMU-CS-92-106R, Computer Science Department, Carnegie Mellon University (1992)

    Google Scholar 

  56. Kodres, U.R.: Geometrical positioning of circuit elements in a computer. In: Proceedings of the 1959 AIEE Fall General Meeting. AIEE, New York (1959) No. CP59-1172

    Google Scholar 

  57. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: Proc. of ICCV (2007)

    Google Scholar 

  58. Konstantinos, T.: Maximum flow techniques for network clustering. Ph.D. thesis, Princeton University (2002)

    Google Scholar 

  59. Lein, E., Hawrylycz, M., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A., Boguski, M., Brockway, K., Byrnes, E., et al.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124), 168–176 (2006)

    Article  Google Scholar 

  60. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 228–242 (2008)

    Article  Google Scholar 

  61. Lloyd, S.P.: Least square quantization in PCM. Technical Report, Bell Telephone Laboratories Paper (1957)

    Google Scholar 

  62. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. In: Proceedings of the 3rd International Workshop on Algorithms and Computation, pp. 274–285. Springer, Berlin (2009)

    Google Scholar 

  64. Michel, J., Pellegrini, F., Roman, J.: Unstructured graph partitioning for sparse linear system solving. In: Proc. of the 4th International Symposium, IRREGULAR’97, pp. 273–286 (1997)

    Google Scholar 

  65. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graphical Models in Image Processing 60(5), 349–384 (1998)

    Article  MATH  Google Scholar 

  66. Muhammad, A., Egerstedt, M.: Control using higher order Laplacians in network topologies. In: Proc. of the 17th Int. Symp. on Math. Theory of Networks and Systems, pp. 1024–1038 (2006)

    Google Scholar 

  67. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  68. Newman, M.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  69. Nicholls, F., Torr, P.H.S.: Discrete minimum ratio curves and surfaces. In: Proc. of CVPR (2010)

    Google Scholar 

  70. Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  71. Pothen, A., Simon, H., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  73. Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  74. Schaeffer, S.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MathSciNet  Google Scholar 

  75. Schmalz, M.S., Ritter, G.X.: Region segmentation techniques for object-based image compression: A review. In: Schmalz, M.S. (ed.) Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications, vol. 5561, pp. 62–75. SPIE, Bellingham (2004)

    Chapter  Google Scholar 

  76. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  77. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  78. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  79. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  80. Simon, H.D., Teng, S.H.: How good is recursive bisection? SIAM Journal of Scientific Computing 18(5), 1436–1445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  81. Singaraju, D., Grady, L., Sinop, A.K., Vidal, R.: P-brush: A continuous valued MRF for image segmentation. In: Blake, A., Kohli, P., Rother, C. (eds.) Advances in Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2010)

    Google Scholar 

  82. Singaraju, D., Grady, L., Vidal, R.: Interactive image segmentation of quadratic energies on directed graphs. In: Proc. of CVPR 2008. IEEE Comput. Soc., Los Alamitos (2008)

    Google Scholar 

  83. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Proc. of ICCV 2007. IEEE Comput. Soc., Los Alamitos (2007)

    Google Scholar 

  84. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  85. Spielman, D.A., Teng, S.H.: Spectral partitioning works: Planar graphs and finite element meshes. Technical Report UCB CSD-96-898, University of California, Berkeley (1996)

    Google Scholar 

  86. Strang, G.: Maximum flows through a domain. Mathematical Programming 26, 123–143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  87. Stuwe, M.: Plateau’s Problem and the Calculus of Variations. Princeton University Press, Princeton (1989)

    Google Scholar 

  88. Sullivan, J.M.: A crystalline approximation theorem for hypersurfaces. Ph.D. thesis, Princeton University, Princeton, NJ (1990)

    Google Scholar 

  89. Szallasi, Z., Somogyi, R.: Genetic network analysis—The millennium opening version. In: Proc. Pacific Symposium of Biocomputing Tutorial (2001)

    Google Scholar 

  90. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2004)

    Google Scholar 

  91. Trichili, H., Bouhlel, M.S., Kammoun, F.: Review and evaluation of medical image segmentation using methods of optimal filtering. Journal of Testing and Evaluation 31(5), 398–404 (2003)

    Google Scholar 

  92. Unger, M., Pock, T., Bischof, H.: Interactive globally optimal image segmentation. Technical Report 08/02, Inst. for Computer Graphics and Vision, Graz University of Technology (2008)

    Google Scholar 

  93. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg—Interactive total variation based image segmentation. In: Proc. of British Machine Vision Conference (2008)

    Google Scholar 

  94. Walshaw, C., Cross, M., Everett, M.: Mesh partitioning and load-balancing for distributed memory parallel systems. In: Topping, B. (ed.) Proc. Parallel & Distributed Computing for Computational Mechanics (1997)

    Google Scholar 

  95. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  96. Xing, E., Karp, R.: CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17, 306–315 (2001)

    Article  Google Scholar 

  97. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  98. Yu, S.X., Shi, J.: Segmentation with pairwise attraction and repulsion. In: Proc. of ICCV, vol. 1. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  99. Yu, S.X., Shi, J.: Understanding popout through repulsion. In: Proc. of CVPR, vol. 2. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  100. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

  101. Zahn, C.: Graph theoretical methods for detecting and describing Gestalt clusters. IEEE Transactions on Computers 20, 68–86 (1971)

    Article  MATH  Google Scholar 

  102. Zeng, X., Chen, W., Peng, Q.: Efficiently solving the piecewise constant Mumford–Shah model using graph cuts. Technical Report, Zhejiang University (2006)

    Google Scholar 

  103. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Machine Learning: Proceedings of the Twentieth International Conference on Machine Learning, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo J. Grady .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grady, L.J., Polimeni, J.R. (2010). Clustering and Segmentation. In: Discrete Calculus. Springer, London. https://doi.org/10.1007/978-1-84996-290-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-290-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-289-6

  • Online ISBN: 978-1-84996-290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics