Skip to main content

Filtering on Graphs

  • Chapter
Discrete Calculus

Abstract

Measured data often includes noise. A data point measured in isolation offers little opportunity to tease signal apart from noise. However, this separation of noise from the signal becomes more possible when multiple data points are acquired which have a relationship with each other. A spatial relationship, such as the edge set of a graph, permits the use of the collective data acquisition to make better decisions about the true data underlying each measurement. This process whereby the spatial relationships of the data are used to provide better estimates of the noiseless data is called a filtering or a denoising process. In this chapter, we outline the assumptions used to justify spatial filtering, describe the equivalent of Fourier analysis on a general graph and discuss how different parameter settings of a small number of variational approaches to filtering lead to a large number of commonly used filters. Although our focus in this chapter is on the filtering of node data (0-cochains), we also discuss how these techniques may be applied to the filtering of edge data (i.e., flows, or 1-cochains) and to the filtering of data associated with higher-dimensional cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, while circulant matrices represent circular convolution, Toeplitz matrices, which comprise a distinct class of matrices, represent linear convolution. A thorough treatment of these matrices is available in [172].

  2. 2.

    Note that ‘λ’ is often used to represent an eigenvalue (e.g., Lemma 5.1). We follow Taubin’s notation for his λμ algorithm by using ‘λ’ as a parameter when discussing Taubin’s algorithm.

  3. 3.

    Note that in image processing the term edge is used to mean discontinuity (e.g., “edge detection”). However, since the context of this entire book is the analysis/processing of graphs (complexes) and data defined on graphs, we reserve the word edge to refer strictly to a 1-cell (i.e., we use edge in the sense of graph theory).

  4. 4.

    The term energy is used throughout the book to represent an objective function which is optimized to produce a useful application-specific solution. In this case, the solution represents the filtered (denoised) signal. Although the term energy is not generally intended to have a physical relationship to energy, note that the energy described in (5.10b) is actually the power dissipation for an electric circuit (when \(\boldsymbol{\mathsf {x}}\) represents the electrical potentials at every node), as given in Chap. 3.

References

  1. Agrawal, A., Raskar, R., Chellappa, R.: What is the range of surface reconstructions from a gradient field? In: Proc. of ECCV. Lecture Notes in Computer Science, vol. 3954, pp. 578–591. Springer, Berlin (2006)

    Google Scholar 

  2. Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 106–118 (2006)

    Article  Google Scholar 

  3. Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 364–376 (2006)

    Article  Google Scholar 

  4. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Transactions on Image Processing 7(3), 421–432 (1998)

    Article  Google Scholar 

  5. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  6. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted graphs for image and mesh filtering. In: Proc. of SSVM. Lecture Notes in Computer Science, vol. 4485, pp. 128–139. Springer, Berlin (2007)

    Google Scholar 

  7. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing 2(3), 296–310 (1993)

    Article  Google Scholar 

  8. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of International Conference on Computer Vision, vol. 1 (2003)

    Google Scholar 

  9. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  12. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chung, F.R.K.: Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  14. Cliff, A.D., Ord, J.K.: Spatial Processes: Models and Applications. Pion, London (1981)

    MATH  Google Scholar 

  15. Cosgriff, R.L.: Identification of shape. Technical Report 820-11 ASTIA AD 254 792, Ohio State Univ. Res. Foundation (1960)

    Google Scholar 

  16. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999)

    Article  Google Scholar 

  17. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: Fast and exact optimization. Journal of Mathematical Imaging and Vision 26(3), 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  18. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324. ACM Press/Addison-Wesley, New York (1999)

    Google Scholar 

  19. DuBois, E.: The sampling and reconstruction of time varying imagery with application in video systems. Proceedings of the IEEE 73(4), 502–522 (1985)

    Article  Google Scholar 

  20. Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Transactions on Image Processing 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  21. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proc. of SIGGRAPH (2002)

    Google Scholar 

  22. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999)

    Article  Google Scholar 

  23. Geman, D., Reynolds, G.: Constrained restoration and the discovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)

    Article  Google Scholar 

  24. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  25. Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. In: Proc. 46th Sess. Int. Stat. Inst. Bulletin ISI, vol. 52, pp. 4–21 (1987)

    Google Scholar 

  26. Grady, L.: Space-variant computer vision: A graph-theoretic approach. Ph.D. thesis, Boston University, Boston, MA (2004)

    Google Scholar 

  27. Grady, L., Alvino, C.: The piecewise smooth Mumford-Shah functional on an arbitrary graph. IEEE Transactions on Image Processing 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  28. Grady, L., Schwartz, E.L.: The Graph Analysis Toolbox: Image processing on arbitrary graphs. Technical Report TR-03-021, Boston University, Boston, MA (2003)

    Google Scholar 

  29. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers, Hanover (2006)

    MATH  Google Scholar 

  30. Hughes, A.: The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Crescitelli, F. (ed.) The Visual System in Vertebrates. The Handbook of Sensory Physiology, vol. 7, pp. 613–756. Springer, Berlin (1977). Chap. 11

    Chapter  Google Scholar 

  31. Lestrel, P.E. (ed.): Fourier Descriptors and Their Applications in Biology. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  32. Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley, Reading (1989)

    Book  MATH  Google Scholar 

  33. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, New York (1989)

    MATH  Google Scholar 

  35. Osher, S., Shen, J.: Digitized PDE method for data restoration. In: Anastassiou, G.A. (ed.) Handbook of Analytic Computational Methods in Applied Mathematics, pp. 751–771. CRC Press, Boca Raton (2000). Chap. 16

    Google Scholar 

  36. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  37. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  38. Ripley, B.D.: Spatial Statistics. Wiley-Interscience, New York (2004)

    Google Scholar 

  39. Rojer, A.S., Schwartz, E.L.: Design considerations for a space-variant visual sensor with complex-logarithmic geometry. In: Proc. ICPR, vol. 2, pp. 278–285. IEEE Comput. Soc., Los Alamitos (1990)

    Google Scholar 

  40. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  41. Sandini, G., Questa, P., Scheffer, D., Mannucci, A.: A retina-like CMOS sensor and its applications. In: IEEE Sensor Array and Multichannel Signal Processing Workshop, IEEE Comput. Soc., Cambridge (2000)

    Google Scholar 

  42. Scannell, J.W., Burns, G.A.P.C., Hilgetag, C.C., O’Neil, M.A., Young, M.P.: The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex 9, 277–299 (1999)

    Article  Google Scholar 

  43. Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Research 20(8), 645–669 (1980)

    Article  Google Scholar 

  44. Shen, J.: The Mumford–Shah digital filter pair (MS-DFP) and applications. In: Proc. of ICIP, vol. 2, pp. 849–852 (2002)

    Google Scholar 

  45. Sporns, O., Kotter, R.: Motifs in brain networks. PLoS Biology 2, 1910–1918 (2004)

    Article  Google Scholar 

  46. Taubin, G.: A signal processing approach to fair surface design. In: Cook, R. (ed.) Computer Graphics Proceedings. Special Interest Group in Computer Graphics (SIGGRAPH) 95, pp. 351–358. ACM, Los Angeles (1995)

    Google Scholar 

  47. Taubin, G., Zhang, T., Golub, G.: Optimal surface smoothing as filter design. In: Proc. of ECCV 1996, pp. 283–292 (1996)

    Google Scholar 

  48. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46, 234–240 (1970)

    Article  Google Scholar 

  49. Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  50. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: TVSeg—Interactive total variation based image segmentation. In: Proc. of British Machine Vision Conference (2008)

    Google Scholar 

  51. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  52. Wallace, R., Ong, P.W., Bederson, B., Schwartz, E.: Space variant image processing. International Journal of Computer Vision 13(1), 71–90 (1994)

    Article  Google Scholar 

  53. Wang, H., Chen, Y., Fang, T., Tyan, J., Ahuja, N.: Gradient adaptive image restoration and enhancement. In: Proc. of Int. Conf. on Image Procession, pp. 2893–2896. IEEE Press, New York (2006)

    Google Scholar 

  54. Worsley, K., Friston, K.: Analysis of fMRI time-series revisited—again. NeuroImage 2(3), 173–181 (1995)

    Article  Google Scholar 

  55. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient domain editing of deforming mesh sequences. In: Proc. of SIGGRAPH, vol. 26 (2007)

    Google Scholar 

  56. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Transactions on Computers C-21(3), 269–281 (1972)

    Article  MathSciNet  Google Scholar 

  57. Zhou, D., Schölkopf, B.: Regularization on discrete spaces. In: Proc. of the 27th DAGM Symp. Lecture Notes in Computer Science, vol. 3663, pp. 361–368. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo J. Grady .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grady, L.J., Polimeni, J.R. (2010). Filtering on Graphs. In: Discrete Calculus. Springer, London. https://doi.org/10.1007/978-1-84996-290-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-290-2_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-289-6

  • Online ISBN: 978-1-84996-290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics