Skip to main content

Multibody Systems

  • Chapter
Bond Graph Methodology
  • 2376 Accesses

Abstract

In Chapter 2, the fundamentals of bond graph based physical modelling have been provided. In the subsequent chapters, several aspects of bond graph modelling have been discussed in detail. In this chapter, we will consider an extension of the bond graph methodology that naturally follows from a formal introduction of the bond graph concept. Since this extension known as multibond graphs, is especially suited for modelling the three-dimensional (3D) motion of multibody systems (MBS) in mechanics, its presentation has been postponed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Allen. Multiport Representation of Inertia Properties of Kinematic Mechanisms. Journal of the Franklin Institute, 308(3):235–253, 1979.

    Article  Google Scholar 

  2. L.S. Bonderson. Vector bond graphs applied to one-dimensional distributed systems. Journal of Dynamic Systems, Measurement and Control, pages 75–82, 1975.

    Google Scholar 

  3. A.M. Bos. Modelling Multibody Systems in Terms of Multibond Graphs with Application to a Motorcycle. PhD thesis, Univ. of Twente, Enschede, The Netherlands, 1986.

    Google Scholar 

  4. P.C. Breedveld. Physical Systems Theory in Terms of Bond Graphs. PhD thesis, Univ. of Twente, Enschede, The Netherlands, 1984.

    Google Scholar 

  5. P.C. Breedveld. Multibond Graph Elements in Physical Systems Theory. Journal of the Franklin Institute, 319(1/2):1–36, 1985.

    Article  Google Scholar 

  6. P.C. Breedveld. A Definition of the Multibond Graph Language. In S.G. Tzafestas and P. Borne, editors, Complex and Distributed Systems: Analysis, Simulation and Control, pages 69–72. Elsevier Science Publishers, 1986.

    Google Scholar 

  7. P.C. Breedveld. Insight in rigid body motion stability via an alternative for the eulerian junction structure. In J.J. Granda and F.E. Cellier, editors, Proc. of the 1999 International Conference on Bond Graph Modeling and Simulation (ICBGM’99), volume 31(1) of Simulation Series, pages 269–274. SCS, 1999.

    Google Scholar 

  8. K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, 1989.

    Google Scholar 

  9. J.J. Craig. Introduction to Robotics Mechanics & Control. Pearson Prenctice Hall, Upper Saddle, New Jersey, USA, 2005.

    Google Scholar 

  10. G. Dauphin-Tanguy, editor. Les bond graphs, chapter 4. Systèmes mécaniques multicorps. Systèmes automatisés. Hermès Science, Paris, 2000.

    Google Scholar 

  11. D. de Falco and E. Riviezzo. Bond graph modeling the longitudinal dynamics of motorcycles. In J.J. Granda and G. Dauphin-Tanguy, editors, Proc. of the 1997 International Conference on Bond Graph Modeling and Simulation, volume 29 (1), pages 274–279, 1997.

    Google Scholar 

  12. W. Drozdz and H.B. Pacejka. Development and Validation of a Bond Graph Handling Model of an Automobile. Journal of the Franklin Institute, 328 (5/6):941–957, 1991.

    Article  Google Scholar 

  13. H. Elmqvist, D. Brück, and M. Otter. Dymola – User’s Manual. Dynasim AB, Lund, Sweden, 1996. URL http://www.Dynasim.se.

    Google Scholar 

  14. E.P. Fahrenthold and D.J. Wargo. Vector Bond Graph Analysis of Mechanical Systems. Trans. ASME, Journal of Dynamic Systems, Measurement and Control, 113:344–353, 1991.

    Article  Google Scholar 

  15. A. Fakri and F. Rocaries. Bond graph components for modelling an electrically powered vehicle. In B. Zupančič, R. Karba, and S. Blaˇzič, editors, Proc. EUROSIM 2007, 2007. ISBN 978-3-901608-32-2.

    Google Scholar 

  16. W. Favre. Contribution à la représentation bond graph des systèmes mécaniques multicorps TOME 1. PhD thesis, L’Institut National des Sciences Appliquées de Lyon, 1997.

    Google Scholar 

  17. W. Favre and S. Scavarda. Bond Graph Representation of Multibody Systems with Kinematic Loops. Journal of the Franklin Institute, 335B, No. 4:643–660, 1998.

    Article  MathSciNet  Google Scholar 

  18. J. Félez, C. Vera, I. San José, and R. Cacho. BONDYN: A Bond Graph Based Simulation Program for Multibody Systems. Trans. ASME, Journal of Dynamic Systems, Measurement and Control, 112:717–727, 1990.

    Article  Google Scholar 

  19. J. Félez, C. Vera, and R. Cacho. Bond Graph Formulation in Terms of Relative Coordinates. In F.E. Cellier and J.J. Granda, editors, Proc. of the International Conference on Bond Graph Modeling, ICBGM’95, pages 217–224. SCS Publishing, January 15-18 1995. Simulation Series, volume 27, no 1, ISBN: 1-56555-037-4.

    Google Scholar 

  20. D. Hrovat and W.E. Tobler. Bond graph modeling of automotive power trains. Journal of the Franklin Institute, 328 (5/6):623–662, 1991.

    Article  Google Scholar 

  21. J.L. Bali˜no. Galerkin finite element method for incompressible thermofluid flows framed within the bond graph theory. Simulation Modelling Practice and Theory, 17 (1):35–49, 2009.

    Article  Google Scholar 

  22. D. C. Karnopp and D. L. Margolis. Analysis and Simulation of Planar Mechanism Systems Using Bond Graphs. Journal of Dynamic Systems, Measurement and Control, 101:187–191, 1979.

    Google Scholar 

  23. D.C. Karnopp. Power-conserving Transformations: Physical Interpretations and Applications using Bond Graphs. Journal of the Franklin Institute, 288(3):175–201, 1969.

    Article  Google Scholar 

  24. D.C. Karnopp. The Energetic Structure of Multibody Dynamic Systems. Journal of the Franklin Institute, 306(2):165–181, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  25. D.C. Karnopp. Understanding Multibody Dynamics Using Bond Graphs. Journal of the Franklin Institute, 334B (4):631–642, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  26. D.C. Karnopp. Dynamic modeling of electric vehicle performance using bond graphs. In J.J. Granda and G. Dauphin-Tanguy, editors, Proc. of the 1997 International Conference on Bond Graph Modeling and Simulation (ICBGM ’97), volume 29 (1), pages 261–266, 1997.

    Google Scholar 

  27. D.C. Karnopp and R.C. Rosenberg. Analysis and Simulation of Multiport Systems – The Bond Graph Approach to Physical System Dynamics. MIT Press, Cambridge, MA, 1968.

    Google Scholar 

  28. D.C. Karnopp and R.C. Rosenberg. System Dynamics: A Unified Approach. John Wiley & Sons, Inc., New York, 1975.

    Google Scholar 

  29. S.A. Kayani and M.A. Malik. Modeling and simulation of biped kinematics using bondgraphs. In Proc. International Conference on Emerging Technologies (ICET ’06), pages 677 – 682, Peshawar, 2006. ISBN 1-4244-0502-5.

    Google Scholar 

  30. E. Kreuzer and W. Schielen. NEWEUL: Software for the Generation of Symbolic Equations of Motion. In W. Schielen, editor, Multibody Systems Handbook. Springer-Verlag, 1990.

    Google Scholar 

  31. J. Landaluze, C.F. Nicols, G. Urzelai, M. Calzada, and R. Reyro. Bond-graph aided modelling and simulation of a 2d-o-f experimental arm. In Guasch and Huber, editors, Proc. of the SCS European Simulation Multiconference ESM ’94, pages 731–739, Barcelona, 1994.

    Google Scholar 

  32. LMS. URL http://http://www.lmsintl.com/solutions.

    Google Scholar 

  33. L.S. Louca, J.L. Stein, and D.G. Rideout. Generating Proper Integrated Dynamic Models for Vehicle Mobility Using a Bond Graph Formulation. In J.J. Granda and G. Dauphin-Tanguy, editors, Proc. of the 2001 International Conference on Bond Graph Modeling and Simulation (ICBGM ’01), volume 33 (1), pages 339–345, 2001.

    Google Scholar 

  34. D. L. Margolis and T. Shim. Instability due to interacting hydraulic and mechanical dynamics in backhoes. Journal of Dynamic Systems, Measurement and Control, 125 (3):497–504, 2003.

    Article  Google Scholar 

  35. W. Marquis-Favre, E. Bideaux, O. Mechin, S. Scavarda, F. Guillemard, and M. Ebalard. Mechatronic bond graph modelling of an automotive vehicle. Mathematical & Computer Modelling of Dynamical Systems, 12 (2/3):189–202, 2006.

    Article  MATH  Google Scholar 

  36. W. Marquis-Favre, E. Bideaux, and S. Scavarda. A planar mechanical library in the AMESim simulation software. Part I: Formulation of dynamics equations. Simulation Modelling Practice and Theory, 14(1):25–46, 2006.

    Article  Google Scholar 

  37. W. Marquis-Favre, E. Bideaux, and S. Scavarda. A planar mechanical library in the AMESim simulation software. Part II: Library composition and illustrative example . Simulation Modelling Practice and Theory, 14(2):95–111, 2006.

    Article  MathSciNet  Google Scholar 

  38. L. Martinez, C. Vera, and J. Félez. Bond graph model for the analysis of the dynamic behavior of the human body. In J.J. Granda and G. Dauphin-Tanguy, editors, Proc. of the 1997 International Conference on Bond Graph Modeling and Simulation (ICBGM ’97), volume 29 (1), pages 295–300, 1997.

    Google Scholar 

  39. B. Maschke. Contribution à une approche par bond-graph de l’étude et la conception de lois de commande de robots contenant des segments flexible. PhD thesis, Université de Paris-Sud Centre d’ Orsay, 1990.

    Google Scholar 

  40. J.M. Mera, C. Vera, J. Félez, and J.J. Esperilla. Influence of the Roll Axis Consideration in Vehicle Dynamics. Bond Graph Models. In J.J. Granda and F.E. Cellier, editors, Proc. of the 2003 International Conference on Bond Graph Modelling and Simulation, volume 35 (2), pages 207–213, 2003.

    Google Scholar 

  41. A. Mukherjee, P.M. Pathak, and A. Dasgupta. Self Balancing Two Legged Walking Robot. In F.E. Cellier and J.J. Granda, editors, Proc. of the 2003 International Conference on Bond Graph Modeling and Simulation, volume 35 (2), pages 182–187, 2003.

    Google Scholar 

  42. C. Niesner, G. Dauphin-Tanguy, D.L. Margolis, F. Guillemard, and M. Pengov. A 4 Wheel Vehicle Bond Graph Model Including Uncertainties on the Car Mass and the Centre of Mass Position. In J.J. Granda and F.E. Cellier, editors, Proc. of the 2005 International Conference on Bond Graph Modeling and Simulation (ICBGM ’05), volume 37 (1), pages 179–184, 2005.

    Google Scholar 

  43. P.E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs, N.J., USA, 1988.

    Google Scholar 

  44. P.E. Nikravesh. Computational Methods in Multibody Systems. In COMETT, DTH Lyngby, May 27–31 1991.

    Google Scholar 

  45. P.E. Nikravesh and Gwanghun Gim. Systematic Construction of the Equation of Motion for Multibody Systems Containing Closed Kinematic Loops. Transactions of the ASME, Journal of Mechanical Design, 115:143–149, 1993.

    Article  Google Scholar 

  46. N. Orlandea, M.A. Chace, and D.A. Calahan. A Sparsity-Oriented Approach to Dynamic Analysis and Design of Mechanical Systems Part I and II. ASME Journal of Engineering for Industry Ser. B, 99:773–784, 1977.

    Google Scholar 

  47. H.B. Pacejka. Tyre factors and vehicle handling. International Journal of Vehicle Design, 1: 1–23, 1979.

    Google Scholar 

  48. H.B. Pacejka and C.G.M. Tol. A bond-graph computer model to simulate the 3-d dynamic behaviour of a heavy truck. In Proc. 10th IMACS World Congress on System Simulation and Scientific Computation, volume 3, pages 398–401, Montreal, 1982.

    Google Scholar 

  49. P. M. Pathak, A. Mukherjee, and A. Dasgupta. Impedence control of space robots using passive degrees of freedom in controller domain,. Journal of Dynamic Systems, Measurement and Control, 127:564–578, 2005.

    Article  Google Scholar 

  50. P.M. Pathak, S. Kumar, and A. Mukherjee. Study of Inter-axis Coupling in Space Robot with Three Reaction Wheels as Attitude Controllers. In J. J. Granda and F. Cellier, editors, Proc. of the 2005 International Conference on Bond Graph Modeling and Simulation, volume 37 (1), pages 199–205, 2005.

    Google Scholar 

  51. T. Periasamy, T. Asokan, and M. Singaperumal. Study on Coupled Dynamics of Underwater-Manipulator System: A Bond Graph Approach. In Proc. of COPEN 2007, pages 93–98, 2007.

    Google Scholar 

  52. G. Romero, J. Flez, J. Maroto, and M.L. Martinez. Simplified bond graph models for simulation of earth moving machines. In J.J. Granda and F.E. Cellier, editors, Proc. of the 2007 International Conference on Bond Graph Modeling, volume 39 (1), pages 139–147, 2007.

    Google Scholar 

  53. J.U. Thoma. Thermofluid Systems by Multi-bondgraphs. Journal of the Franklin Institute, 329(6):999–1009, 1992.

    Article  Google Scholar 

  54. M.J.L. Tiernego and A.M. Bos. Modelling the dynamics and kinematics of mechanical systems with multibond graphs. Journal of the Franklin Institute, 319(1/2):pp. 37–50, 1985.

    Article  Google Scholar 

  55. J. van Dijk and P.C. Breedveld. Simulation of System Models Containing Zero-order Causal Paths — II. Numerical Implications of Class 1 Zero-order Causal Paths. Journal of the Franklin Inst., 328(5/6):981–1004, 1991.

    Article  MATH  Google Scholar 

  56. J. Wittenburg. Dynamics of Systems of Rigid Bodies. Teubner-Verlag, Stuttgart, 1977.

    MATH  Google Scholar 

  57. J. Wittenburg and U. Wolz. Meza verde: A symbolic program for nonlinear articulated-rigidbody dynamics. In Proc. 10th ASME Design Engineering Div. Conf. on Mechanical Vibration and Noise, 1985. Cincinatti, Ohio, USA.

    Google Scholar 

  58. A. Yazman. Modélisation des robots flexibles par les bond-graphs – application à l’analyse de leurs performance dynamics. PhD thesis, Université de Paris-Sud, Centre d’ Orsay, 1988.

    Google Scholar 

  59. A. Zeid. Bond Graph Modeling of Planar Mechanisms With Realistic Joint Effects. Journal of Dynamic Systems, Measurement and Control, 111:15–23, 1989.

    Article  Google Scholar 

  60. A. Zeid and C. H. Chung. Bond Graph Modeling of Multibody Systems: a Library of Threedimensional Joints. Journal of the Franklin Institute, 329 (4):605–636, 1992.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Multibody Systems. In: Bond Graph Methodology. Springer, London. https://doi.org/10.1007/978-1-84882-882-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-882-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-881-0

  • Online ISBN: 978-1-84882-882-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics