Skip to main content

EIS Diagnosis for PEM Fuel Cell Performance

  • Chapter

Abstract

Two types of EIS diagnosis exist for PEM fuel cells: material/component evaluation before assembly into a fuel cell and material/component evaluation after assembly into a fuel cell. Normally, the former is evaluated using a half-cell (or an electrochemical cell), while the latter is evaluated in a fuel cell or stack. We define the former as an ex situ diagnosis, and the latter as an in situ diagnosis. In the following sections, we will describe them separately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulze M, Wagner N, Steinhilber G, Guelzuw E, Woehr M, Bolwin K (1996) Characterization and basic research investigations at PEFC electrodes and MEA. Fuel cell seminar & exposition, 663–7. Courtesy Associates, Washington, DC

    Google Scholar 

  2. Easton EB, Pickup PG (2005) An electrochemical impedance spectroscopy study of fuel cell electrodes. Electrochim Acta 50:2469–74

    Article  CAS  Google Scholar 

  3. Perez J, Gonzalez ER, Ticianelli EA (1998) Impedance studies of the oxygen reduction on thin porous coating rotating platinum electrodes. J Electrochem Soc 145:2307–13

    Article  CAS  Google Scholar 

  4. Genies L, Bultel Y, Faure R, Durand R (2003) Impedance study of the oxygen reduction reaction on platinum nanoparticles in alkaline media. Electrochim Acta 48(25–6):3879–90

    Article  CAS  Google Scholar 

  5. Baker R (2008) Substituted iron phthalocyanines: electrocatalytic activity towards O2 reduction in a proton exchange membrane fuel cell cathode environment as a function of temperature. M.A.Sc. diss. The University of British Columbia, Canada

    Google Scholar 

  6. Antoine O, Bultel Y, Durand R (2001) Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J Electroanal Chem 499:85–94

    Article  CAS  Google Scholar 

  7. Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P (2005) Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21:8487–94

    Article  CAS  Google Scholar 

  8. Gottlieb MH and Sollner K (1968) Failure of the Nernst-Einstein equation to correlate electrical resistances and rates of ionic self-exchange across certain fixed charge membranes. Biophys J 8:515–35

    Article  CAS  Google Scholar 

  9. Xie Z, Song C, Andreaus B, Navessin T, Shi Z, Zhang J, Holdcroft S (2006) Discrepancies in the measurement of ionic conductivity of PEMs using two- and fourprobe AC impedance spectroscopy. J Electrochem Soc 153:E173–8

    Article  CAS  Google Scholar 

  10. Slade S, Campbell SA, Ralph TR, Walsh FC (2002) Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149:A1556–64

    Article  CAS  Google Scholar 

  11. Cahan BD, Wainright JS (1993) AC impedance investigations of proton conduction in NafionTM . J Electrochem Soc 140:L185–6

    Article  CAS  Google Scholar 

  12. Gardner CL, Anantaraman AV (1995) Measurement of membrane conductivities using an open-ended coaxial probe. J Electroanal Chem 395:67–73

    Article  Google Scholar 

  13. Gardner CL, Anantaraman AV (1998) Studies on ion-exchange membranes. II. measurement of the anisotropic conductance of Nafion®. J Electroanal Chem 449:209–14.

    Article  CAS  Google Scholar 

  14. Ciureanu M, Wang H (2000) Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. J New Mater Electrochem Syst 3:107–19

    CAS  Google Scholar 

  15. Silva RF, De Francesco M, Pozio A (2004) Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells. J Power Sources 134:18–26

    Article  CAS  Google Scholar 

  16. Anantaraman AV, Gardner CL (1996) Studies on ion-exchange membranes. Part 1. effect of humidity on the conductivity of Nafion®. J Electroanal Chem 414:115–20

    Article  Google Scholar 

  17. O’Hayre R, Prinz FB (2004) The air/platinum/Nafion triple-phase boundary: characteristics, scaling, and implications for fuel cells. J Electrochem Soc 151:A756–62

    Article  Google Scholar 

  18. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–99

    Article  CAS  Google Scholar 

  19. Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32:859–63

    Article  CAS  Google Scholar 

  20. Brunetto C, Tina G, Squadrito G, Moschetto A (2004) PEMFC diagnostics and modelling by electrochemical impedance spectroscopy. Proceedings of the 12th IEEE Mediterranean electrochemical conference. IEEE Cat. No. 04CH37521, 3:1045–50

    Google Scholar 

  21. Tsampas MN, Pikos A, Brosda S, Katsaounis A, Vayenas CG (2006) The effect of membrane thickness on the conductivity of Nafion. Electrochim Acta 51:2743–55

    Article  CAS  Google Scholar 

  22. Wagner N, Schnurnberger W, Müller B, Lang M (1998) Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells. Electrochim Acta 43:3785–93

    Article  CAS  Google Scholar 

  23. Kim JD, Park YI, Kobayashi K, Nagai M, Kunimatsu M (2001) Characterization of CO tolerance of PEMFC by ac impedance spectroscopy. Solid state ionics: diffusion and reactions 140:313–25

    Article  CAS  Google Scholar 

  24. Li G, Pickup PG (2003) Ionic conductivity of PEMFC electrodes. J Electrochem Soc 150:C745–52

    Article  CAS  Google Scholar 

  25. Kong CS, Kim DY, Lee HK, Shul YG, Lee TH (2002) Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J Power Sources 108:185–91

    Article  CAS  Google Scholar 

  26. Ciureanu M, Roberge R (2001) Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathode. J Phys Chem B 105:3531–9

    Article  CAS  Google Scholar 

  27. Liu F, Yi B, Xing D, Yu J, Hou Z, Fu Y (2003) Development of novel self-humidifying composite membranes for fuel cells. J Power Sources 124:81–9

    Article  CAS  Google Scholar 

  28. Cha SY, Lee WM (1999) Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface. J Electrochem Soc 146:4055–60

    Article  CAS  Google Scholar 

  29. Freire TJP, Gonzalez ER (2001) Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells. J Electroanal Chem 503:57–68

    Article  CAS  Google Scholar 

  30. Andreaus B, McEvoy AJ, Scherer GG (2002) Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy. Electrochim Acta 47:2223–9

    Article  CAS  Google Scholar 

  31. Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzalez ER (1998) Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell. Electrochim Acta 43:3761–6

    Article  CAS  Google Scholar 

  32. Fisher A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28:277–82

    Article  Google Scholar 

  33. Romero-Castanon T, Arriaga LG, Cano-Castillo U (2003) Impedance spectroscopy as a tool in the evaluation of MEAs. J Power Sources 118:179–82

    Article  CAS  Google Scholar 

  34. Eikerling M, Kornyshev AA (1999) Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells. J Electroanal Chem 475:107–23

    Article  CAS  Google Scholar 

  35. Lefebvre MC, Martin RB, Pickup PG (1999) Characterization of ionic conductivity profiles within proton exchange membrane fuel cell gas diffusion electrodes by impedance spectroscopy. Electrochem Solid-State Lett 2:259–61

    Article  CAS  Google Scholar 

  36. Boillot M, Bonnet C, Jatroudakis N, Carre P, Didierjean S, Lapicque F (2006) Effect of gas dilution on PEM fuel cell performance and impedance response. Fuel Cells 6:31–7

    Article  CAS  Google Scholar 

  37. Khan AR, Zhao J, Polevaya OY (2003) Study of ammonia formation during the autothermal reforming of hydrocarbon based fuels. Mater Res Soc Symp Proc 756:409–14

    CAS  Google Scholar 

  38. Soto HJ, Woo KL, Van-Zee JW, Murthy M (2003) Effect of transient ammonia concentrations on PEMFC performance. Electrochem Solid-State Lett 6:A133–5

    Article  CAS  Google Scholar 

  39. Uribe FA, Gottesfeld S, Zawodzinski Jr TA (2002) Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J Electrochem Soc 149:A293–6

    Article  CAS  Google Scholar 

  40. Zhang J, Wang H, Wilkinson DP, Song D, Shen J, Liu ZS (2005) Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. J Power Sources 147:58–71

    Article  CAS  Google Scholar 

  41. Wagner N, Gulzow E (2004) Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell. J Power Sources 127:341–7

    Article  CAS  Google Scholar 

  42. Ciureanu M, Wang H (1999) Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells: I. Electro-oxidation of H2 and H2/CO mixtures on Ptbased gas-diffusion electrodes. J Electrochem Soc 146:4031–40

    Article  CAS  Google Scholar 

  43. Müller JT, Urban PM (1998) Characterization of direct methanol fuel cells by ac impedance spectroscopy. J Power Sources 75:139–43

    Article  Google Scholar 

  44. Harper J, Rust M, Sayers B, Savage A (2004) High-frequency, high-current impedance spectroscopy: experimental protocols enabling measurement up to 1MHz at high current densities. TB/ANALYTICAL/001. Solartron Analytical, Farnborough, UK

    Google Scholar 

  45. Abe T, Shima H, Watanabe K, Ito Y (2004) Study of PEFCs by AC impedance, current interrupt, and dew point measurements. J Electrochem Soc 151:A101–5

    Article  CAS  Google Scholar 

  46. Silva RF, De-Francesco M, Pozio A (2004) Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells. J Power Sources 134:18–26

    Article  CAS  Google Scholar 

  47. Hombrados AG, Gonzalez L, Rubio MA, Agila W, Villanueva E, Guinea D, Chinarro E, Moreno B, Jurando JR (2005) Symmetrical electrode mode for PEMFC characterisation using impedance spectroscopy. J Power Sources 151:25–31

    Article  CAS  Google Scholar 

  48. Guo Q, Cayetano M, Tsou Y, De-Castro ES, White RE (2003) Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy. J Electrochem Soc 150:A1440–9

    Article  CAS  Google Scholar 

  49. Ciureanu M (2004) Effects of Nafion® dehydration in PEM fuel cells. J Appl Electrochem 34:705–14

    Article  CAS  Google Scholar 

  50. Ahn S, Tatarchuk BJ (1990) Composite electrode structures for fuel cell applications. Proceedings of the 25th intersociety energy conversion engineering conference 3:287–92

    Google Scholar 

  51. Ihonen J, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2002) Investigation of mass-transport limitations in the solid polymer fuel cell cathode. J Electrochem Soc 149:A448–54

    Article  CAS  Google Scholar 

  52. Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim Acta 48:4175–87

    Article  CAS  Google Scholar 

  53. Jaouen F, Lindbergh G, Wiezell K (2003) Transient techniques for investigating masstransport limitations in gas diffusion electrodes. J Electrochem Soc 150:A1711–17

    Article  CAS  Google Scholar 

  54. Yuan XZ, Sun C, Wang H, Zhang J (2006) AC impedance diagnosis of a 500 W PEM fuel cell stack: part II: individual cell impedance. J Power Sources 161:929–37

    Article  CAS  Google Scholar 

  55. Yuan XZ, Sun C, Blanco M, Wang H, Zhang J, Wilkinson D (2006) AC impedance diagnosis of a 500 W PEM fuel cell stack: part I: stack impedance. J Power Sources 161:920–8

    Article  CAS  Google Scholar 

  56. Mann RF, Amphlett JC, Hooper MAI, Jensen HM, Peppley BA, Roberge PR (2000) Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 86:173–80

    Article  CAS  Google Scholar 

  57. Perry ML, Newman J, Cairns EJ (1998) Mass transport in gas-diffusion electrodes: a diagnostic tool for fuel-cell cathodes. J Electrochem Soc 145:5–15

    Article  CAS  Google Scholar 

  58. Young HC, Yong GS, Won CC, Seong IW, Hak SH (2003) Evaluation of the Nafion effect on the activity of Pt–Ru electrocatalysts for the electro-oxidation of methanol. J Power Sources 118:334–41

    Article  Google Scholar 

  59. Song JM, Cha SY, Lee WM (2001) Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. J Power Sources 94:78–84

    Article  CAS  Google Scholar 

  60. Halla JD, Mamak M, Williams DE, Ozin GA (2003) Meso-SiO2-C12EO10OH-CF3SO3H – a novel proton-conducting solid electrolyte. Adv Funct Mater 13:133–8

    Article  CAS  Google Scholar 

  61. Dollé M, Orsini F, Gozdz AS, Tarascon JM (2001) Development of reliable threeelectrode impedance measurements in plastic Li-ion batteries. J Electrochem Soc 148:A851–7

    Article  Google Scholar 

  62. Song SM, Koo IG, Lee WM (2002) The influence of oxygen additions to hydrogen in their electrode reactions at Pt/Nafion interface. Electrochim Acta 47:2413–19

    Article  CAS  Google Scholar 

  63. Chan SH, Chen XJ, Khor KA (2001) Reliability and accuracy of measured overpotential in a three-electrode fuel cell system. J Appl Electrochem 31:1163–70

    Article  CAS  Google Scholar 

  64. Li G, Pickup PG (2004) Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells. Electrochim Acta 49:4119–26

    Article  CAS  Google Scholar 

  65. Ren X, Springer TE, Gottesfeld S (2000) Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc 147:92–8

    Article  CAS  Google Scholar 

  66. Foulkes FR, Archibald GW, Ogumi Z, Takehara Z (1990) An ionized air reference electrode. J Electrochem Soc 137:2022−4

    Article  CAS  Google Scholar 

  67. He W, Van Nguyen T (2004) Edge effects on reference electrode measurements in PEM fuel cells. J Electrochem Soc 151:A185–95

    Article  CAS  Google Scholar 

  68. Küver A, Vogel I, Vielstich W (1994) Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen reference electrode. J Power Sources 52:77–80

    Article  Google Scholar 

  69. Büchi FN, Scherer GG (2001) Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. J Electrochem Soc 148:A183–8

    Article  Google Scholar 

  70. Winkler J, Hendriksen PV, Bonanos N, Mogensen M (1998) Geometric requirements of solid electrolyte cells with a reference electrode. J Electrochem Soc 145:1184–92

    Article  CAS  Google Scholar 

  71. Adler SB, Henderson BT, Wilson MA, Taylor DM, Richards RE (2000) Reference electrode placement and seals in electrochemical oxygen generators. Solid State Ionics 134:35–42

    Article  CAS  Google Scholar 

  72. Adler SB (2002) Reference electrode placement in thin solid electrolytes. J Electrochem Soc 149:E166–72

    Article  CAS  Google Scholar 

  73. Kuhn H, Andreaus B, Wokaun A, Scherer GG (2005) Electrochemical impedance spectroscopy applied to polymer electrolyte fuel cells with a pseudo reference electrode arrangement. Electrochim Acta 51:1622−8

    Article  Google Scholar 

  74. Halseid R, Vie PJS, Tunold R (2004) Influence of ammonium on conductivity and water content of Nafion 117 membranes. J Electrochem Soc 51:A381–8

    Article  Google Scholar 

  75. Raposa G (2004) Performing ac impedance measurements on fuel cells. Elektron 21:15–16

    Google Scholar 

  76. Tang Y, Zhang J, Song C, Liu H, Zhang J, Wang H, Mackinnon S, Peckham T, Li J, McDermid S, Kozak P (2006) Temperature dependent performance and in situ ac impedance of high-temperature PEM fuel cells using the Nafion-112 membrane. J Electrochem Soc 153:A2036−43

    Google Scholar 

  77. Brett DJL, Atkins S, Brandon NP, Vesovic V, Vasileiadis N, Kucernak A (2003) Localized impedance measurements along a single channel of a solid polymer fuel cell. Electrochem Solid-State Lett 6:A63–6

    Article  CAS  Google Scholar 

  78. Popkirov GS, Schindler RN (1992) A new impedance spectrometer for the investigation of electrochemical systems. Rev Sci Instrum 63:5366–72

    Article  CAS  Google Scholar 

  79. Popkirov GS, Schindler RN (1993) Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Rev Sci Instrum 64:3111–15

    Article  CAS  Google Scholar 

  80. Popkirov GS, Schindler RN (1993) Validation of experimental data in electrochemical impedance spectroscopy. Electrochim Acta 38:861–7

    Article  CAS  Google Scholar 

  81. Popkirov GS, Schindler RN (1995) Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochim Acta 40:2511–17

    Article  CAS  Google Scholar 

  82. Mopsik FI (1985) The transformation of time-domain relaxation data into the frequency domain. IEEE Transactions on Electrical Insulation EI-20:957–64

    Article  Google Scholar 

  83. Popkirov GS (1996) Fast time-resolved electrochemical impedance spectroscopy for investigations under nonstationary conditions. Electrochim Acta 41:1023–7

    Article  CAS  Google Scholar 

  84. Wiegand G, Neumaier KR, Sackmann E (2000) Fast impedance spectroscopy: general aspects and performance study for single ion channel measurements. Rev Sci Instrum 71:2309-20

    Article  CAS  Google Scholar 

  85. Metelko D, Jamnik J, Pejovnik S (1992) Comparison between the impedance spectra of Li/SOCl2 batteries obtained using the time and the frequency domain measurement techniques. J Appl Electrochem 22:638–43

    Article  CAS  Google Scholar 

  86. Gabrielli C, Keddam M, Takenouti H (1990) New trends in the investigation of electrochemical systems by impedance techniques: multi-transfer function analysis. Electrochim Acta 35:1553–7

    Article  CAS  Google Scholar 

  87. Boukamp BA (2004) Impedance spectroscopy, strength and limitations. Technisches Messen 71:454–9

    Article  CAS  Google Scholar 

  88. Husimi Y, Wada A (1976) Time-domain measurement of dielectric dispersion as a response to pseudorandom noise. Rev Sci Instrum 47:213–19

    Article  CAS  Google Scholar 

  89. Garland JE, Pettit CM, Roy D (2004) Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochim Acta 49:2623–35

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). EIS Diagnosis for PEM Fuel Cell Performance. In: Electrochemical Impedance Spectroscopy in PEM Fuel Cells. Springer, London. https://doi.org/10.1007/978-1-84882-846-9_5

Download citation

Publish with us

Policies and ethics