Skip to main content

The Biodistribution (II): Human

  • Chapter
  • First Online:
Nuclear Medicine Radiation Dosimetry

Abstract

The measurement of the distribution and excretion of the radionuclide following the administration of a radiopharmaceutical is necessary in order to evaluate the consequential internal radiation dosimetry. This chapter reviews various in vivo and in vitro means of acquiring these data. The conjugate-view method used commonly in planar scintigraphy is derived and the various compensatory techniques to account for attenuation and photon scatter are derived and examined. Quantitative single-photon emission computed tomography (SPECT) which, due to current limitations in technology, is limited to absorbed dose evaluations of small anatomical volumes is reviewed as are the corrections required for scatter and attenuation. Positron emission tomography (PET) is inherently quantitative and its greater sensitivity compared to SPECT permits whole-body biodistributions of positron-emitting radionuclides to be measured. The principles of PET data acquisition are reviewed in the context of the nuclear medicine physicist designing a protocol for a whole-body biodistribution measurement. Finally, quantitative bremsstrahlung imaging of β-emitting therapeutic radionuclides is a most challenging endeavor, and one which is not frequently performed. A review of the methodologies is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Excretion of activity through sweat and saliva is rarely measured and would only be done for a specific purpose such as estimating the radioactive contamination from a subject having received a high administered activity of a long-lived therapeutic radionuclide (e.g., 131I).

  2. 2.

    It is desired to know if there are significant differences between the biodistribution derived from the healthy volunteer cohort and those of patients that could affect the dosimetry estimate for the latter. As Phase II subjects are patients with disease, they are unlikely to be able to tolerate as complete an assessment of the biodistribution as performed in Phase I. Hence, comparison of the measurements of the rate at which activity is cleared from blood and/or is excreted can assist in assessing if the biodistribution is significantly changed in the diseased cohort.

  3. 3.

    Everitt (1994) has challenged this last assertion by suggesting that the use of meta-analysis means that there are few clinical studies with insufficient numbers of subjects that cannot help to resolve important clinical questions.

  4. 4.

    This is not quite so true for short-lived radioisotopes, such as 11C, excreted through the urinary pathway. If the physical half-life of the isotope is much less than the time between urinary bladder voids, the activity of the urinary bladder contents can be determined more directly through in vivo imaging.

  5. 5.

    For activity measurements for biodistribution and dosimetry studies alone, there is no reason that blood samples cannot be arterial, should kinetic modeling using an arterial input function be concurrent as in a PET study.

  6. 6.

    The patient would receive a higher administered activity in order to allow a diagnostic-quality image. Hence, the usual optimization of benefit versus exposure risk used in medical practice would apply.

  7. 7.

    In principle, conjugate-view scintigraphy could be performed with a single-headed gamma camera: one view whole-body scan, followed by a rotation of the gamma camera head by 180o and a subsequent scan of the conjugate-view. However, error is introduced as the biodistributions of both views were not acquired at the same time. The error would be greatest at early times postinjection when still in the distribution phase.

  8. 8.

    A gamma camera typically acts as a paralysable system.

  9. 9.

    While selecting the detector’s energy discriminator to accept only the high-energy photon components will avoid this mechanism of scatter contribution, this comes at the impractical cost of thicker and heavier collimators.

  10. 10.

    The condition of an atrophic kidney with compensatory hypertrophy in the contralateral kidney, which is not unknown, would make this method unusable.

  11. 11.

    See, for example, Bailey (2003) for a description of the scintillation light photon-electron conversion detection element.

  12. 12.

    A scattered coincidence is, strictly speaking, a “true” coincidence as both detections arise from the same annihilation event, even though an incorrect LoR results. For the purpose of discussion here, a “true” coincidence is defined as that arising from the pair of unscattered photons created by the same electron–positron annihilation.

  13. 13.

    Although caution is required in the substitution approach as the vector conjugated with the therapeutic radionuclide may have differing biokinetics than when conjugated with the diagnostic radionuclide.

  14. 14.

    Recall from Chap. 7 that bremsstrahlung from α particles with kinetic energies typically used in nuclear medicine is negligible.

References

  • Axelsson B, Msaki P, Israelsson A (1984) Subtraction of Compton-scattered photons in single photon emission computerized tomography. J Nucl Med 25:490–494

    PubMed  CAS  Google Scholar 

  • Bailey DL (2003) Data acquisition and performance characterisation in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MM (eds) Positron emission tomography – basic science and clinical practice. Springer, London

    Google Scholar 

  • Bailey DL, Meikle SR (1994) A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39:411–424

    Article  PubMed  CAS  Google Scholar 

  • Bailey DL, Karp JS, Surti S (2003) Physics and instrumentation in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MM (eds) Positron emission tomography – basic science and clinical practice. Springer, London

    Google Scholar 

  • Beddar AS, Salehpour M, Briere TM, Hamidian H, Gillin MT (2005) Preliminary evaluation of implantable MOSFET radiation dosimeters. Phys Med Biol 50:141–149

    Article  PubMed  CAS  Google Scholar 

  • Bentourkia M, Lecomte R (1999) Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imag 18:66–73

    Article  CAS  Google Scholar 

  • Bergstrom J, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7:42–50

    Article  PubMed  CAS  Google Scholar 

  • Bruyant PB (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43:1343–1358

    PubMed  Google Scholar 

  • Buijs WCAM, Massuger LFAG, Claessens RAMJ, Kenemans P, Corstens FHM (1992) Dosimetric evaluation of immunoscintigraphy of indium-111-labelled monoclonal fragments in patients with ovarian cancer. J Nucl Med 33:1113–1120

    PubMed  CAS  Google Scholar 

  • Buijs WCAM, Siegel JA, Boerman OC, Corstens FHM (1998) Absolute organ activity estimated by five different methods of background correction. J Nucl Med 39:2167–2172

    PubMed  CAS  Google Scholar 

  • Buvat I, Benali H, Frouin F, Bazin JP, Di Paola R (1993) Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol 38:123–138

    Article  PubMed  CAS  Google Scholar 

  • Buvat I, Benali H, Todd-Pokropek A, Di Paola R (1994) Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 21:675–694

    Article  PubMed  CAS  Google Scholar 

  • Buvat I, Rodriguez-Vaillafuerte M, Todd-Pokropek A, Benali H, Di Paola R (1995) Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 36:1476–1488

    PubMed  CAS  Google Scholar 

  • Clarke LP, Cullom SJ, Shaw R et al (1992) Bremsstrahlung imaging using the gamma camera: factors affecting attenuation. J Nucl Med 33:161–166

    PubMed  CAS  Google Scholar 

  • Chang L-T (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643

    Article  Google Scholar 

  • Deloar HM, Watabe H, Nakamura T, Narita Y, Yamadera A, Fujiwara T, Itoh M (1997) Internal dose estimation including the nasal cavity and major airway for continuous inhalation of C15O2, 15O2 and C15O using the thermoluminescent dosimeter method. J Nucl Med 38:1603–1613

    PubMed  CAS  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc 39:1–38

    Google Scholar 

  • Eary JF, Appelbaum FL, Durack L, Brown P (1988) Preliminary validation of the opposing view method for quantitative gamma camera imaging. Med Phys 16:382–387

    Article  Google Scholar 

  • Everitt BS (1994) Statistical methods for medical investigations, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Fleming JS (1996) Quantitative measurements for gamma camera images. In: Chandler ST, Thomson WH (eds) Mathematical techniques in nuclear medicine. Institute of Physics and Engineering in Medicine, York

    Google Scholar 

  • Flux G, Bardiès M, Monsieurs M, Savolainen S, Strand S-E, Lassmann M (2006) The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 16:47–59

    PubMed  Google Scholar 

  • Giap HB, Macey BJ, Podoloff DA (1995) Development of a SPECT-based 3-dimensional treatment planning system for radioimmunotherapy. J Nucl Med 36:1885–1894

    PubMed  CAS  Google Scholar 

  • Gilardi MC, Bettinardi V, Todd-Pokropek A, Milanesi L, Fazio F (1988) Assessment and comparison of three scatter correction ntechniques in single photon emission computed tomography. J Nucl Med 29:1971–1979

    PubMed  CAS  Google Scholar 

  • Gladstone DJ, Lu XQ, Humm JL, Bowman HF, Chin LM (1994) A miniature MOSFET radiation dosimeter probe. Med Phys 21:1721–1728

    Article  PubMed  CAS  Google Scholar 

  • Goddu SM, Howell RW, Giuliani DC, Rao DV (1998) Biological dosimetry of bone marrow for incorporated 90Y. J Nucl Med 39:547–551

    PubMed  CAS  Google Scholar 

  • Gonzalez-Trotter DE, Jaszczak RJ, Bowsher JE, Akabani G, Greer KKL (2001) High-resolution absolue SPECT quantification for I-131 distributions used in the treatment of lymphoma: a phantom study. IEEE Trans Nucl Sci 48:707–714

    Article  Google Scholar 

  • Goris ML, Daspit SG, McLaughlin P, Kriss JP (1976) Interpolative background subtraction. J Nucl Med 17:744–777

    PubMed  CAS  Google Scholar 

  • Griffith MH, Yorke ED, Wessels BW, deNardo GL, Neacy WP (1988) Direct dose confirmation of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy. J Nucl Med 29:1795–1809

    PubMed  CAS  Google Scholar 

  • Grootonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41:2757–2774

    Article  Google Scholar 

  • Hammond ND, Moldofsky PJ, Beardsley MR, Nulhern CB (1984) External imaging techniques for quantitation of distribution of I-131 F(ab′)2 fragments of monoclonal antibody in humans. Med Phys 11:778–783

    Article  PubMed  CAS  Google Scholar 

  • He B, Frey EC (2006) Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol 51:3967–3981

    Article  PubMed  CAS  Google Scholar 

  • Helisch A, Forster GJ, Reber H, Buchholz HG, Arnold R, Goke B, Weber MM, Wiedenmann B, Pauwels S, Haus U, Bouterfa H, Bartenstein P (2004) Pre-therapeutic dosimetry of biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME (1977) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Article  Google Scholar 

  • Houston AS, Sampson WFD (1989) Comparison of two interpolative background subtraction methods using phantom and clinical data. Nucl Med Comm 10:121–132

    Article  CAS  Google Scholar 

  • Hudson HH, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13:601–609

    Article  CAS  Google Scholar 

  • Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S (1993) Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 34:2216–2221

    PubMed  CAS  Google Scholar 

  • ICRP (1975) Report on the Task Group on Reference Man – ICRP publication 23. International Commission on Radiological Protection, Pergamon, Oxford

    Google Scholar 

  • ICRP (2002) Basic anatomical and physiological data for use in radiological protection: Reference values – ICRP publication 89. International Commission on Radiological Protection, Pergamon, Oxford

    Google Scholar 

  • ICRU (2002) Absorbed dose specification in nuclear medicine – report no 67. International Commission on Radiation Units and Measurements. Nuclear Technology Publishing, Ashford

    Google Scholar 

  • IPEM (1996) Mathematical techniques in nuclear medicine – report no 73. Chandler ST, Thomson WH (eds). Institute of Physics and Engineering in Medicine, York

    Google Scholar 

  • IPEM (2003) Quality control of gamma camera systems – Report No 86. Bolster A (ed). Institute of Physics and Engineering in Medicine, York

    Google Scholar 

  • Jaszczak RJ, Greer KL, Floyd CE, Harris CG, Coleman RE (1984) Improved SPECT quantification using compensation for scattered photons. Nucl Med 25:893–900

    CAS  Google Scholar 

  • Jaszczak RJ, Floyd CE, Coleman RE (1985) Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci 32:786–793

    Article  Google Scholar 

  • Johns HE, Cunningham JR (1983) The physics of radiology, 4th edn. Charles C Thomas, Springfield

    Google Scholar 

  • Jönsson L, Ljungberg M, Strand S-E (2005) Evaluation of accuracy in activity calculations for the conjugate view method from Monte Carlo simulated scintillation camera images using experimental data in an anthropomorphic phantom. J Nucl Med 46:1679–1686

    PubMed  Google Scholar 

  • King MA, Hademenos GJ, Glick SJ (1992) A dual-photopeak method for scatter correction. J Nucl Med 33:605–612

    PubMed  CAS  Google Scholar 

  • Koeppe RA (2008). Data analysis and image processing. In: Wahl RL (ed) Principles and practice of PET and PET/CT, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kojima A, Takaki Y, Matsumoto M, Tomiguchi S, Hara M, Shimomura O, Koga Y, Takahashi M (1993) A preliminary phantom study on a proposed model for quantification of renal planar scintigraphy. Med Phys 20:33–37

    Article  PubMed  CAS  Google Scholar 

  • Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X (1988) SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 29:195–202

    PubMed  CAS  Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assit Tomogr 8:303–316

    Google Scholar 

  • Lawson RS (1998) Application of mathematical models in dynamic nuclear medicine studies. Phys Med Biol 44:R57–R98

    Article  Google Scholar 

  • Lenarczyk M, Goddu SM, Rao DV, Howell RW (2001) Biologic dosimetry of bone marrow: induction of micronuclei in reticulocytes after exposure to 32P and 90Y. J Nucl Med 42:162–169

    PubMed  CAS  Google Scholar 

  • Levin CS, Dahlbom M, Hoffman EJ (1995) A Monte Carlo correction for the effect of Compton scattering in 3-D PET imaging. IEEE Trans Nucl Sci 42:1181–1188

    Google Scholar 

  • Ljungberg M, King MA, Hademenos GJ, Strand S-E (1994) Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 35:143–151

    PubMed  CAS  Google Scholar 

  • McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osman S, Khela MKK, Aboagye E, Coombes RC, Hui A-M, Cohen PS (2008) The biodistribution and radiation dosiemtry of the Arg-Gly-Asp (RGD) peptide [18F]AH111585 in healthy volunteers. J Nucl Med 49:1664–1667

    Article  PubMed  Google Scholar 

  • Macey DJ, Marshall R (1982) Absolute quantitation of radiotracer uptake in the lungs using a gamma camera. J Nucl Med 23:731–735

    PubMed  CAS  Google Scholar 

  • Martin S, Lisbona A, Richard J, Morteau S, Denizot B, Bardiès M (2000) Production of new thermoluminescent mini-dosimeters. Phys Med Biol 45:479–494

    Article  PubMed  CAS  Google Scholar 

  • Mas J, Hannequin P, Younes RB, Bellaton B, Bidt R (1990) Scatter correction in planar imaging and SPECT by constrained factor analysis of dynamic structures (FADS). Phys Med Biol 35:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Nakamura T, Watabe H, Itoh M, Hatazawa J (1993) Estimation of organ biodistribution and absorbed dose from experimental measurements with TLDs in PET studies. Med Biol Eng Comput 31:151–156

    Article  Google Scholar 

  • Meikle SR, Badawi RD (2003) Quantitative techniques in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MM (eds) Positron emission tomography – basic science and clinical practice. Springer, London

    Google Scholar 

  • Meredith RF, Shen S, Forero A, Lobuglio A (2008) A method to correct for radioactivity in large vessels that overlap the spine in imaging-based marrow dosimetry of lumbar vertebrae. J Nucl Med 49:279–284

    Article  PubMed  Google Scholar 

  • Minarik D, Skögreen Gleisner K, Ljungberg M (2008) Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol 53:5689–5703

    Article  PubMed  CAS  Google Scholar 

  • Moore SC, Brunelle JA, Kirsch A-M (1982) Quantitative multi-detector emission computerized tomography using iterative attenuation compensation. J Nucl Med 23:706–714

    PubMed  CAS  Google Scholar 

  • Neben S, Anklesaria P, Greenberger J, Mauch P (1993) Quantitation of murine hematopoietic stem cells in vitro by limiting dilution analysis of cobblestone area formation on a clonal stromal cell line. Exp Hematol 21:438–443

    PubMed  CAS  Google Scholar 

  • Nichols K, Shrivastava PN, Powell OM, Adatepe MH, Isaacs GH (1987) Non-interventional background corrections for scintigrams. Phys Med Biol 32:605–613

    Article  PubMed  CAS  Google Scholar 

  • Ollinger JM (1995) Detector efficiency and Compton scatter in fully 3D PET. IEEE Trans Nucl Sci 42:1168–1173

    Article  Google Scholar 

  • Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:153–176

    Article  PubMed  CAS  Google Scholar 

  • Pass B, Aldrich JE (1985) Dental enamel as an in vivo radiation dosimeter. Med Phys 12:305–307

    Article  PubMed  CAS  Google Scholar 

  • Pentlow KS, Graham MC, Lambrecht RM, Daghigian F, Bacharach SL, Bendriem B, Finn RD, Jordan K, Kalaigian H, Karp JS, Robeson WR, Larson SM (1996) Quantitative imaging of iodine-124 with PET. J Nucl Med 37:1557–1562

    Google Scholar 

  • Ploemacher RE, van der Sluijs JP, Voerman JSA, Brons NHC (1989) An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74:2755–2763

    PubMed  CAS  Google Scholar 

  • Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, Marbach P, Muller-Gartner HW (1999) Uptake kinetics of the somatostatin receptor ligand [90Y]DOTA-Dphe(1)-Tyr(3)-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the Y-90-labelled analogue. Eur J Nucl Med 26:358–366

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine computer and Instrumentation Council. J Nucl Med 36:1489–1513

    PubMed  CAS  Google Scholar 

  • Saha GB (2005) Basics of PET imaging. Springer, New York

    Google Scholar 

  • Schauer DA, Desrosiers MF, Le FG, Seltzer SM, Links JM (1994) EPR dosimetry of cortical bone and tooth enamel irradiated with x and gamma rays: study of energy dependence. Radiat Res 138:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sgouros G (1993) Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 34:689–694

    PubMed  CAS  Google Scholar 

  • Sgouros G (2005) Blood and bone marrow dosiemtry in radioiodine therapy of thyroid cancer (letter to the editor). J Nucl Med 46:899–900

    PubMed  Google Scholar 

  • Sgouros G, Jureidini IM, Scott AM, Graham MC, Larson SM, Scheinberg DA (1996) Bone marrow dosimetry: regional variability of marrow-localizing antibody. J Nucl Med 37:695–698

    PubMed  CAS  Google Scholar 

  • Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal-dosimetry (3D-ID) software. J Nucl Med 45:1366–1372

    PubMed  CAS  Google Scholar 

  • Shao L, Freifelder R, Karp JS (1994) Triple energy window scatter correction technique in PET. IEEE Trans Med Imag 4:641–648

    Article  Google Scholar 

  • Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ (1994) Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 35:1381–1389

    PubMed  CAS  Google Scholar 

  • Shen S, Meredith RF, Duan J et al (2002) Improved prediction of myelotoxivity using a patient-specific imaging does estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 43:1245–1253

    PubMed  CAS  Google Scholar 

  • Siegel JA, Wu RK, Maurer AH (1985) The buildup factor: effect of scatter on absolute volume determination. Nucl Med 26:390–394

    CAS  Google Scholar 

  • Siegel JA (1985) The effect of source size on the buildup factor calculation of absolute volume. J Nucl Med 26:1319–1322

    PubMed  CAS  Google Scholar 

  • Siegel JA (2005) Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloblative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm 20:126–140

    Article  PubMed  CAS  Google Scholar 

  • Siegel JA, Pawlyk LRE, DA HJA, Sharkey RM, Goldenberg DM (1989) Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Int J Rad Apll Instrum B16:553–559

    Article  Google Scholar 

  • Siegel JA, Handy DM, Kopher KA, Zeiger LS, Order SE (1992) Therapeutic beta irradiating isotopes in bone metastasis: a technique for bremsstrahlung imaging and quantitation. Antibody Immunoconj Radiopharm 5:237–248

    Google Scholar 

  • Siegel JA, Whyte-Ellis S, Zeiger LS, Order SE, Wallner PE (1994) Bremsstrahlung SPECT imaging and volume quantification with phosphorus-32. Antibody Immunoconj Radipharm 7:1–10

    Google Scholar 

  • Siegel JA, Zeiger LS, Order SE, Wallner PE (1995) Quantitative bremsstrahlung SPECT imaging: Use for volume, activity, and absorbed dose calculations. Int J Radiat Oncol Biol Phys 31:953–958

    Article  PubMed  CAS  Google Scholar 

  • Siegel J, Stubbs TS, Stabin M, Hays M, Koral K, Robertson J, Howell R, Wessels B, Fisher D, Weber D, Brill A (1999) MIRD Pamphlet No. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    PubMed  CAS  Google Scholar 

  • Siegel JA, Sparks RB, Sharkey RM (2005) Blood-based red marrow dosimetry: where’s the beef? (letter to the editor). J Nucl Med 46:1404–1405

    PubMed  Google Scholar 

  • Sparks RB (2005) Data collection for dosimetry analysis in imaging studies. Presented at the Society of Nuclear Medicine Annual Meeting

    Google Scholar 

  • Spinks TJ, Miller MP, Bailey DL, Bloomfield DM, Livieratos L, Jones T (1998) The effect of activity outside the direct field of view in a 3D-only whole-body positron tomography. Phys Med Biol 43:895–904

    Article  PubMed  CAS  Google Scholar 

  • Sprague DR, Chin FT, Liow J-S, Fujita M, Burns HD, Hargreaves R, Stubbs JB, Pike VW, Innis RB, Mozley PD (2007) Human biodistribution and radiation dosimetry of the tachykinin NK1 antagonist radioligand [18F]SPA-RQ: comparison of thin-slice, bisected and 2-dimensional planar image analysis. J Nucl Med 48:100–107

    PubMed  CAS  Google Scholar 

  • Stabin MG (2008) Fundamentals of nuclear medicine dosimetry. Springer, New York

    Google Scholar 

  • Stabin MG, Sparks RB, Crow E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  • Strand S-E, Strandh M, Ljungber M, Tagesson M (1994a) Mini-Tl-dosimeters for in vivo measurements. J Nucl Med 35:78P

    Google Scholar 

  • Strand S-E, Ljungberg M, Tennvall J, Norrgren K, Garkavij M (1994b) Radio-immunotherapy dosimetry with special emphasis on SPECT quantification and extracorporeal immune-absorption. Med Biol Eng Comput 32:551–561

    Article  PubMed  CAS  Google Scholar 

  • Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37:783–788

    Article  Google Scholar 

  • Tarantola G, Zito F, Gerundini P (2003) PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med 44:756–769

    PubMed  Google Scholar 

  • Thomas SR, Maxon HR, Keriakes JG, Saenger EL (1972) Quantitative external counting techniques enabling improved diagnostic and therapeutic decisions in patients with well-differentiated thyroid cancer. Radiology 122:731–737

    Google Scholar 

  • Thomas SR, Maxon HR, Keriakes JG (1976) In vivo quantification of lesion radioactivity using external counting methods. Med Phys 3:253–255

    Article  CAS  Google Scholar 

  • Thomas SR, Gelfand MJ, Burns GS et al (1983) Radiation absorbed-dose estimates for the liver, spleen and metaphyseal growth complexes in children undergoing gallium-67 citrate scanning. Radiology 146:817–820

    PubMed  CAS  Google Scholar 

  • Turkington TG (2008) PET physics and PET instrumentation. In: Wahl RL (ed) Principles and practice of PET and PET/CT, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Williams LE, Wong JYC, Findley DO, Forell BW (1989) Measurement and estimation of organ bremsstrahlung radiation dose. J Nucl Med 30:1373–1377

    PubMed  CAS  Google Scholar 

  • Willowson K, Bailey DL, Baldock KC (2008) Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 53:3099–3112

    Article  PubMed  Google Scholar 

  • Woodard HQ (1984) The relation of weight of haematopoietic marrow to body weight. Br J Radiol 57:903–907

    Article  PubMed  CAS  Google Scholar 

  • Wu RK, Siegel JA (1984) Absolute quantitation of radioactivity using the buildup factor. Med Phys 11:189–192

    Article  PubMed  CAS  Google Scholar 

  • Zaidi H (2000) Comparative evaluation of scatter correction techniques in 3D positrion emission tomography. Eur J Nucl Med 27:1813–1826

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

McParland, B.J. (2010). The Biodistribution (II): Human. In: Nuclear Medicine Radiation Dosimetry. Springer, London. https://doi.org/10.1007/978-1-84882-126-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-126-2_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-125-5

  • Online ISBN: 978-1-84882-126-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics