Skip to main content

Macroscopic Source Descriptions

  • Reference work entry
Comprehensive Electrocardiology
  • 3382 Accesses

1 6.1 Introduction

Throughout the cardiac cycle, the cells of the heart deliver varying amounts of electric current to the surrounding tissues. The effect of these currents at the body’s surface is the production of potentials which change continuously during the course of a heartbeat. In attempting to understand the nature of these body-surface potentials, various models have been postulated. These models describe the electrical sources and the volume conductor in which these sources are embedded, i.e., the human torso.

The computation of the potential distribution at the body surface based on such modeling assumptions is called the “forward problem of electrocardiography” (Chap. 8). Its solution is a prerequisite for the solution of a problem of more direct clinical interest, the so-called “inverse problem of electrocardiography.” By this is meant the study of the electrical state of the heart through analysis of the potentials at the body surface (Chap. 9). Since this problem has...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Helmholtz, H., Ueber einige Gezetze der Verteilung elektrischer Ströme in körperliche Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Pogg. Ann. Physik und Chemie, 1853;89: 211–233; 353–377.

    Article  Google Scholar 

  2. Plonsey, R., Bioelectric Phenomena. New York: McGraw-Hill, 1969.

    Google Scholar 

  3. Plonsey, R., An extension of the solid angle formulation for an active cell. Biophys. J., 1965;5: 663–666.

    Article  PubMed  CAS  Google Scholar 

  4. Plonsey, R., and R.C. Barr, Bioelectricity: A Quantitative Approach. New York: Kluwer Academic/Plenum Press, 2000.

    Book  Google Scholar 

  5. Wilson, F.N., A.G. Macleod, and P.S. Barker, The distribution of action currents produced by the heart muscle and other excitable tissues immersed in conducting media. J. Gen. Physiol., 1933;16: 423–456.

    Article  PubMed  CAS  Google Scholar 

  6. Spach, M.S., et al., Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Am. Heart J., 1972;30: 505–519.

    CAS  Google Scholar 

  7. van Oosterom, A. and V. Jacquemet, A parameterized description of transmembrane potentials used in forward and inverse procedures, in International Conference on Electrocardiology. Gdansk, Poland: Folia Cardiologica, 2005.

    Google Scholar 

  8. Scher, A.M. and A.C. Young, Ventricular depolarization and the genesis of the QRS. Ann. NY Acad. Sci., 1957;65: 768–778.

    Article  PubMed  CAS  Google Scholar 

  9. Holland, R.P. and M.F. Arnsdorf, Solid angle theory and the electrocardiogram: physiologic and quantitative interpretations. Prog. Cardiovasc. Dis., 1977;19: 431–457.

    Article  PubMed  CAS  Google Scholar 

  10. Spach, M.S., et al., Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circulation. Res., 1979;45: 188–204.

    Article  PubMed  CAS  Google Scholar 

  11. Scher, A.M., L.V. Corbin, and A.C. Young, Cardiac cell-to-cell conduction in electrocardiographic modelling, in Measuring and Modelling of the Cardiac Electric Field. Slowak Acc. Science; Bratislava: VEDA, 1980.

    Google Scholar 

  12. van Oosterom, A. and J. Strackee, The Solid Angle of a Plane Triangle. IEEE Trans. Biomed. Eng., 1983;BME-30(2): 125–126.

    Article  Google Scholar 

  13. Durrer, D. and L.H. van der Tweel, Spread of activation in the left ventricular wall of the dog. Am. Heart J., 1953;46: 683–691.

    Article  PubMed  CAS  Google Scholar 

  14. Brody, D.A., A theoretical analysis of intracavitary blood mass influence on the heart-lead relationship. Circ. Res., 1956;IV: 731–738.

    Article  Google Scholar 

  15. van Oosterom, A. and R. Plonsey, The Brody effect revisited. J. Electrocardiol., 1991;24: 339–348.

    Article  PubMed  Google Scholar 

  16. Taccardi, B., et al., Effect of myocardial fiber direction on epicardial potentials. Circulation, 1994;90–96: 3076–3090.

    Article  Google Scholar 

  17. van Oosterom, A. and R.T. van Dam, Potential distribution in the left ventricular wall during depolarization. Adv. Cardiol., 1976;16: 27–31.

    PubMed  Google Scholar 

  18. van Oosterom, A., Cardiac Potential Distributions. Department of Medical Physics,University of Amsterdam: Amsterdam, The Netherlands, 1978.

    Google Scholar 

  19. Ritsema van Eck, H.J., Digital Simulation of Cardiac Excitation and Depolarization. Dalhousie University: Halifax, NS, 1972.

    Google Scholar 

  20. Miller, W.T. and D.B. Geselowitz, Simulation studies of the electrocardiogram. I. The normal heart. Circ. Research., 1978;43: 301–315.

    Article  CAS  Google Scholar 

  21. Scher, A.M., Validity of the uniform double layer in the solution of the ECG forward problem. J. Electrocardiol., 1995;27(Suppl.): 163–169.

    Article  Google Scholar 

  22. van Oosterom, A., Solidifying the solid angle. J. Electrocardiol., 2002;35S: 181–192.

    Article  Google Scholar 

  23. Greenbaum, R.A., et al., Left ventricular fibre architecture in man. Br. Heart J., 1981;45: 248–263.

    Article  PubMed  CAS  Google Scholar 

  24. Streeter, D.D.J., et al., Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res., 1969;24: 339–347.

    Article  PubMed  Google Scholar 

  25. Scher, A.M., Excitation of the heart, in The Theoretical Basis of Electrocardiology, C.V. Nelson and D.B. Geselowitz, Editors. Oxford: Clarendon Press, 1976, pp. 44–69.

    Google Scholar 

  26. Oostendorp, T.F., R. MacLeod, and A. van Oosterom, Non-invasive determination of the activation sequence of the heart validation with invasive data. Proc. 19-th IEEE/EMBS Conf, 1997, IEEE-Engineering in Medicine Society. CDROM: pp 335–338.

    Google Scholar 

  27. Ramirez, I.F., et al., Effects of cardiac configuration, paddle placement and paddle size on defibrillation current distribution: a finite element model. Med. Biol. Eng. Comput., 1989;27: 587–594.

    Article  Google Scholar 

  28. Corbin, L.V. and A.M. Scher, The canine heart as an electrocardiographic generator. Circ. Res., 1977;41/1: 58–67.

    Article  Google Scholar 

  29. Roberts, D.E. and A.M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res., 1982;50: 342–351.

    Article  PubMed  CAS  Google Scholar 

  30. Clerc, L., Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol., 1976;255: 335–346.

    PubMed  CAS  Google Scholar 

  31. Weidmann, S., Electrical constants of trabecular muscle from mammalian heart. J. Physiol., 1970;210: 1041–1054.

    PubMed  CAS  Google Scholar 

  32. Plonsey, R. and A. van Oosterom, Implications of macroscopic source strength on cardiac cellular activation models. J. Electrocardiol., 1991;24/2: 99–112.

    Article  Google Scholar 

  33. Roth, B.J., Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng., 1997;BME-44: 326–328.

    Article  Google Scholar 

  34. Colli-Franzone, P., et al., Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium: comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ. Res., 1982;51: 330–346.

    Article  PubMed  CAS  Google Scholar 

  35. Taccardi, B., et al., ECG waveforms and cardiac electric sources. J. Electrocardiol., 1996;29S: 98–100.

    Article  Google Scholar 

  36. van Oosterom, A., Anisotropy and the double layer concept, in Progress in Electrocardiology, P.W. Macfarlane, Editor. Tunbridge Wells: Pitman Medical, 1979, pp. 91–97.

    Google Scholar 

  37. Henriquez, C.S., Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng., 1993;21(1): 1–77.

    PubMed  CAS  Google Scholar 

  38. Kléber, A.G. and C.B. Riegger, Electrical constants of arterially perfused rabbit papillary muscle. J. Physiol., 1987;385: 307–324.

    PubMed  Google Scholar 

  39. Scher, A.M., et al., Spread of electrical activity through the wall of the ventricle. Cardiovasc. Res., 1953;1: 539–547.

    CAS  Google Scholar 

  40. van Oosterom, A., Cell models – macroscopic source descriptions, in Comprehensive Electrocardiology, P.W. Macfarlane and T.T.V. Lawrie, Editors. Oxford: Pergamon Press, 1989, pp. 155–179.

    Google Scholar 

  41. Muler, A.L. and V.S. Markin, Electrical properties of anisotropic nerve-muscle syncytia-II, spread of flat front of excitation. Biophysics, 1977;22: 536–541.

    Google Scholar 

  42. Gulrajani, R.M., Bioelectricity and Biomagnetism. New York: Wiley, 1998.

    Google Scholar 

  43. Cuppen, J.J.M. and A. van Oosterom, Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng., 1984;BME-31: 652–659.

    Article  Google Scholar 

  44. van Oosterom, A. and T.F. Oostendorp, ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart, 2004;90(2): 165–168.

    Article  PubMed  Google Scholar 

  45. Greensite, F., Y.J. Qian, and G.J.M. Huiskamp, Myocardial activation imaging: a new theorem and its implications, in Basic and Applied Biomedical Engineering, Building blocks for health care. Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1995.

    Google Scholar 

  46. Huiskamp, G.J.M. and A.V. Oosterom, Forward electrocardiography based on measured data, in Images of the Twenty-First Century. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Y.K.A.F.A. Spelman, Editor. New York: IEEE Publishing Services, 1989, pp. 189–190.

    Google Scholar 

  47. Huiskamp, G.J.M., et al., Invasive confirmation of the human ventricular activation sequence as computed from body surface potentials. in Computers in Cardiology ‘92. Los Alamitos, CA: IEEE Computer Society Press, 1993.

    Google Scholar 

  48. Huiskamp, G.J.M., et al., The depolarization sequence of the human heart surface computed from measured body surface potentials: confrontation with invasive measurements. in Electrocardiology’88. Wiesbaden: Elsevier, 1989.

    Google Scholar 

  49. Modre, R., et al., Atrial noninvasive activation mapping of paced rhythm data. J. Cardiovasc. Electrophysiol., 2003;13: 712–719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

van Oosterom, A. (2010). Macroscopic Source Descriptions. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics