Skip to main content

Advanced Controls for New Machining Processes

  • Chapter
Machine Tools for High Performance Machining

Abstract

This chapter describes the basic concepts involved in advanced CNC systems for new machining processes. It begins with a description of some of the classic ideas about numerical control. Particular attention is paid to problems in state-of-the-art numerical control at the machine level, such as trajectory generation and servo control systems. There is a description of new concepts in advanced CNC systems involving multi-level hierarchical control architectures, which include not only the machine level, but also include a process level and a supervisory level. This is followed by a description of the sensory system for machining processes, which is essential for implementing the concept of the “ideal machining unit”. The chapter then goes on to offer an introduction to openarchitecture CNC systems. It describes communications in industrial environments and an architecture for networked control and supervision via the Internet. Finally, there is a brief summary of the systems available to assist in programming and the architectures of current CNC systems. There is also a description of the most recent developments in manual programming for current CNC systems and possible architectures for these systems, with the different uses of PCs and their various operating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Habaibeh A, Gindy N (2000) A new approach for systematic design of condition monitor ing systems for milling processes. J of Mater Process Technol, 107:243–251

    Article  Google Scholar 

  2. Azpeitia JL et al. (2006) Desarrollo de nuevas estrategias de control basadas en observadores de estado para la mejora de la precisión y la dinámica en MH (in Spanish, New control strategies bases on state-observers for improving precision and machine dynamics). XIV Congreso de Máquinas Herramienta y Tecnologías de Fabricación: 457–476

    Google Scholar 

  3. Boissier R et al. (2001) Enhancing numerical controllers using MMS concepts and a CORBA-based software bus. Int J Comput Integr Manuf, 14(6):560–569

    Article  Google Scholar 

  4. Fagor Automation Scoop (2007) CNC 8070 Programming Manual. Fagor

    Google Scholar 

  5. Deleure C, Lannoo M (2004) Nanostructures. Theory and Modeling. NanoScience and Technology series. Springer Verlag

    Google Scholar 

  6. Felser M (2005) Real-time ethernet – Industry prospective. Proceedings of the IEEE, 93:1118–1129

    Article  Google Scholar 

  7. Feng CX, Wang XF (2003) Surface roughness predictive modeling:neural networks versus regression. IIE Transactions, 35:11–27

    Article  Google Scholar 

  8. Goser K et al. (2004) Nanoelectronics and Nanosystems. Springer Verlag

    Google Scholar 

  9. Haber R, Alique A (2003) Intelligent process supervision for predicting tool wear in machining processes. Journal of Mechatronics, Special Issue on Computational Intelligence in Mechatronics Systems, 13(8–9):825–849

    Article  Google Scholar 

  10. Haber R, Alique JR (2007) Fuzzy logic-based torque control system for milling process optimization. IEEE Trans on Systems, Man and Cybernetics, 37 (5):941–950

    Article  Google Scholar 

  11. Haber R et al. (1998) Toward intelligent machining: hierarchical fuzzy control for the end milling process. IEEE Trans Contr Sys Technol, 6 (2):188–199

    Article  Google Scholar 

  12. Haber R et al. (2007) A classic solution for the control of a high-performance drilling process. Intern J of Mach Tool Manufact, 47:2290–2297

    Article  Google Scholar 

  13. HEIDENHAIN (2007) Uniformly Digital. Technical Information. 6+10 Edition. Klartext.

    Google Scholar 

  14. Ji K, Kim WJ (2005) Real-Time Control of Networked Control Systems via Ethernet. Int J Contr, Automat Syst, 3 (4):591–600

    Google Scholar 

  15. Koren Y (1980) Cross coupled biaxial computer control for manufacturing systems. J of Dynam Syst Measure Contr, Trans of the ASME 102:265–272

    MATH  Google Scholar 

  16. Koren Y, Bollinger JG (1978) Design parameters for sampled data drives for CNC machine tools. IEEE Trans on Ind Applications IA, 14(3):380–390

    Google Scholar 

  17. Landers RG et al. (2004) A comparison of model-based machining force control approaches. Intern J of Mach Tool Manufact, 44:733–748

    Article  Google Scholar 

  18. Lee KC, Lee S (2002). Performance evaluation of switched Ethernet for real-time industrial communications. Computer Standards & Interfaces, 24:411–423

    Article  Google Scholar 

  19. Lian FL et al. (2001) Performance Evaluation of Control Networks: Ethernet, ControleNet, and DeviceNet. IEEE Control Systems Magazine, 21(1):66–83

    Article  MathSciNet  Google Scholar 

  20. Liang SY et al. (2004) Machining process monitoring and control: The state of the art. J of Manufact Sci Engineer, Trans of the ASME, 126:297–310

    Article  Google Scholar 

  21. Martin D et al. (2008) Design and implementation of a networked monitoring platform based on CORBA middleware for industrial processes. Future Generation Computer Systems, in review

    Google Scholar 

  22. Moreno A et al. (2006) SIMUMEK: Un sistema de simulación grafica 3D para operaciones de mecanizado CNC (in Spanish, System for the graphic simulation of 3D machining operations). XIV Congreso de Máquinas Herramienta y Tecnologías de Fabricación, 391–403

    Google Scholar 

  23. Neumann P (2004) Communication in Industrial Automation – What Is Going On? Proceedings of INCOM’04 Salvador Brazil: 1332–1347

    Google Scholar 

  24. Norman et al. (2006) A sophisticated platform for characterization, monitoring and control of machining. Meas Sci Technol, 17:847–854

    Article  Google Scholar 

  25. Park J et al. (1995) An open architecture real time controller for machining processes. Proc CRIP, May

    Google Scholar 

  26. Poo AN, Bollinger JG (1974) Digital analog servosystem design for CNC. IEEE Ind Appli Society, 9th Annual Meeting

    Google Scholar 

  27. Poo AN et al. (1972) Dynamic errors in type 1 contouring systems. IEEE Trans on Ind Applications IA-8(4):477–484

    Article  Google Scholar 

  28. Pristschow G et al. (2001) Open controller architecture – Past, present and future. Annals of CIRP, 50(2):463–470

    Article  Google Scholar 

  29. Renton D, Elbestawi MA (2000) High speed servo control of multi-axis machine tools. Inter J of Mach Tool Manufact, 40:539:559

    Article  Google Scholar 

  30. Sanz R (2003) A CORBA-based architecture for strategic process control. Annual Reviews in Control 27:15–22

    Article  Google Scholar 

  31. SERCOS Interface Controller (2000) Reference Manual 10/2000

    Google Scholar 

  32. Solis E et al. (2004) A new analytical–experimental method for the identification of stability lobes in high speed milling. Inter J of Mach Tool Manufact, 44:1591–1597

    Article  Google Scholar 

  33. Song Q, Kasabov N (2006) TWNFI – a transductive neuro-fuzzy inference system with weighted data normalization for personalized modelling. Neur Netw, 19:1591–1596

    Article  MATH  Google Scholar 

  34. Tanenbaum AS (2001) Computer Networks. 3rd ed. Prentice Hall, Upple Saddle River NJ

    Google Scholar 

  35. Tikhon M et al. (2004) NURBS interpolator for constant material removal rate in open NC machine tools. Inter J of Mach Tool Manufact, 44:237–241

    Article  Google Scholar 

  36. Tomizuka M (1987) Zero phase error tracking algorithm for digital control. J of Dynamic Systems, Measurement and Control, Trans of the ASME, 109:65–68

    MATH  Google Scholar 

  37. Torfs D et al. (1992) Extended bandwidth zero phase error tracking control of nonminimal phase systems. J of Dynamic Systems, Measurement and Control, Trans of the ASME, 114:347–351

    Article  Google Scholar 

  38. Tsai YH et al. (1999) An in process surface recognition system based on neural networks in end milling cutting operations. Inter J of Mach Tool Manufact, 39: 583–605

    Article  Google Scholar 

  39. Waser R (2003) Nanoelectronics and Information Technology. Ed. Wiley-VCH

    Google Scholar 

  40. Wecks M, Ye G (1990) Sharp corner tracking using the IKF control strategy. Annals of the CIRP, 39(1):437–441

    Google Scholar 

  41. Yang TC (2006) Networked Control System: A Brief Survey, Control Theory and Applications. IEE Proceedings, 153(4):403–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Alique, J., Haber, R. (2009). Advanced Controls for New Machining Processes. In: López de Lacalle, L., Lamikiz, A. (eds) Machine Tools for High Performance Machining. Springer, London. https://doi.org/10.1007/978-1-84800-380-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-380-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-379-8

  • Online ISBN: 978-1-84800-380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics