Skip to main content

Interaction of Stone Components with Cells and Tissues

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

This chapter is a review of the interaction of stone-forming materials with cells and tissues. The evidence for intratubular and interstitial locations of calcium oxalate and calcium phosphate is examined; the latter mineral with particular reference to its appearance in Randall’s plaques. The mechanisms of surface adherence and nucleation of crystals are discussed, as well as the evidence for internalization of crystals by renal tubular epithelium and their further processing. The cellular consequences of crystal–cell interaction, specifically stimulation of cell division and initiation of several varieties of cell damage or death, are reviewed. The specificity of crystal–cell interaction is also covered. This includes a discussion of the features of cultured cells responsible for the reported specificity and the molecules expressed on the cell surface responsible for crystal adherence, with particular emphasis on the case of calcium oxalate monohydrate (COM). The smaller amount of evidence regarding the above phenomena for other stone forming crystals – uric acid, brushite, and apatite is also reviewed. The issue of whether cell or tissue damage predisposes to stone formation is also covered; particularly the large amount of data on the toxic effects of oxalate, as well as the lesser amount of information available regarding hypercalciuria, hyperphosphaturia, and hyperuricosuria. The chapter concludes with a synthesis of the material into a comprehensive hypothesis for the initiation of stone disease through interaction of stone-forming constituents with cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plus unpublished observations

References

  1. Evan AP, Lingeman JE, Coe FL, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111:607-616.

    CAS  PubMed  Google Scholar 

  2. Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44(Suppl 1):326-334.

    CAS  PubMed  Google Scholar 

  3. Khan SR. Heterogeneous nucleation of calcium oxalate crystals in mammalian urine [Review]. Scan Microsc. 1995;9:597-614.

    CAS  Google Scholar 

  4. Khan SR, Byer KJ, Thamilselvan S, et al. Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol. 199;10(Suppl 14):S457-S463.

    Google Scholar 

  5. Lieske JC, Toback FG, Deganello S. Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int. 1998;54:796-803.

    Article  CAS  PubMed  Google Scholar 

  6. Evan AP, Coe FL, Lingeman JE, et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007;290:1315-1323.

    CAS  Google Scholar 

  7. Bobryshev YV, Killingsworth MC, Lord RS, Grabs AJ. Matrix vesicles in the fibrous cap of atherosclerotic plaque: Possible contribution to plaque rupture. J Cell Mol Med. 2008 Oct;12(5B):2073-82.

    Article  CAS  PubMed  Google Scholar 

  8. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15:2857-2867.

    Article  CAS  PubMed  Google Scholar 

  9. Farzaneh-Far A, Shanahan CM. Biology of vascular calcification in renal disease. Nephron Exp Nephrol. 2005;101:e134-e138.

    Article  PubMed  Google Scholar 

  10. Derfus BA, Rachow JW, Mandel NS, et al. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum. 1992;35:231-240.

    Article  CAS  PubMed  Google Scholar 

  11. Costa-Bauza A, Isern B, Perello J, Sanchis P, Grases F. Factors affecting the regrowth of renal stones in vitro: a contribution to the understanding of renal stone development. Scand J Urol Nephrol. 2005;39:194-199.

    Article  CAS  PubMed  Google Scholar 

  12. Costa-Bauza A, Perello J, Isern B, Sanchis P, Grases F. Factors affecting calcium oxalate dihydrate fragmented calculi regrowth. BMC Urol. 2006;6:16.

    Article  CAS  PubMed  Google Scholar 

  13. Derfus B, Kranendonk S, Camacho N, et al. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int. 1998;63:258-262.

    Article  CAS  PubMed  Google Scholar 

  14. Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage. 2009 Jan;17(1):64-72.

    Article  CAS  PubMed  Google Scholar 

  15. Vaingankar SM, Fitzpatrick TA, Johnson K, Goding JW, Maurice M, Terkeltaub R. Subcellular targeting and function of osteoblast nucleotide pyrophosphatase phosphodiesterase 1. Am J Physiol Cell Physiol. 2004;286:C1177-C1187.

    Article  CAS  PubMed  Google Scholar 

  16. Moochhala SH, Sayer JA, Carr G, Simmons NL. Renal calcium stones: insights from the control of bone mineralization. Exp Physiol. 2008;93:43-49.

    Article  CAS  PubMed  Google Scholar 

  17. Gill WB, Ruggiero K, Straus FH. Crystallization studies in a urothelial-lined living test tube (the catheterized female rat bladder). I. Calcium oxalate crystal adhesion to the chemically injured rat bladder. Invest Urol. 1979;17:257-261.

    CAS  PubMed  Google Scholar 

  18. Khan SR, Cockrell CA, Finlayson B, Hackett RL. Crystal retention by injured urothelium of the rat urinary bladder. J Urol. 1984;132:153-157.

    CAS  PubMed  Google Scholar 

  19. Hess B. Nutritional aspects of stone disease. Endocrinol Metab Clin North Am. 2002;31:1017-101x.

    Article  CAS  PubMed  Google Scholar 

  20. Rodgers AL, De Klerk DP. Crystalluria and urolithiasis in a relatively stone-free population. Scan Electron Microsc. 1986;0:1157-1167.

    CAS  Google Scholar 

  21. Lieske JC, Toback FG, Deganello S. Face-selective adhesion of calcium oxalate dihydrate crystals to renal epithelial cells. Calcif Tissue Int. 1996;58:195-200.

    CAS  PubMed  Google Scholar 

  22. Lieske JC, Swift H, Martin T, Patterson B, Toback FG. Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci USA. 1994;91:6987-6991.

    Article  CAS  PubMed  Google Scholar 

  23. Lieske JC, Toback FG. Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol (Renal Fluid Electrolyte Physiol ). 1993;264(33):F800-F807.

    CAS  Google Scholar 

  24. Lieske JC, Spargo BH, Toback FG. Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol. 1992;148:1517-1519.

    CAS  PubMed  Google Scholar 

  25. de Bruijn WC, Boeve ER, van Run PR, et al. Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc. 1994;8:541-550.

    CAS  PubMed  Google Scholar 

  26. de Bruijn WC, Boeve ER, van Run PR, et al. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc. 1995;9:103-114.

    PubMed  Google Scholar 

  27. de Bruijn WC, Boeve ER, van Run PRWA, et al. Etiology of calcium oxalate nephrolithiasis in rats. II. The role of the papilla in stone formation. Scanning Microsc. 1995;9:115-125.

    PubMed  Google Scholar 

  28. Anderson L, McDonald JR. The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet. 1946;82:275-282.

    CAS  PubMed  Google Scholar 

  29. Cheung HS. Biologic effects of calcium-containing crystals. Curr Opin Rheumatol. 2005;17:336-340.

    Article  CAS  PubMed  Google Scholar 

  30. Lieske JC, Norris R, Swift H, Toback FG. Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int. 1997;52:1291-1301.

    Article  CAS  PubMed  Google Scholar 

  31. Koul HK, Menon M, Chaturvedi LS, et al. COM crystals activate the p38 mitogen-activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem. 2002;277:36845-36852.

    Article  CAS  PubMed  Google Scholar 

  32. Drenick EJ, Stanley TM, Border WA, et al. Renal damage with intestinal bypass. Ann Intern Med. 1978;89:594-599.

    CAS  PubMed  Google Scholar 

  33. Illum N, Lavard L, Danpure CJ, Horn T, AErenlund JH, Skovby F. Primary hyperoxaluria type 1: clinical manifestations in infancy and prenatal diagnosis. Child Nephrol Urol. 1992;12:225-227.

    CAS  PubMed  Google Scholar 

  34. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol. 2004;8:75-88.

    Article  CAS  PubMed  Google Scholar 

  35. Mandel N, Riese R. Crystal-cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. Am J Law Med. 1991;17:402-406.

    CAS  Google Scholar 

  36. Riese RJ. “Adherence of kidney stone microcrystals to renal papillary collecting tubule cells in primary culture.” Unpublished Ph.D. dissertation, Departments of Medicine and Biophysics, Medical College of Wisconsin, 1989; 0 edn, 1-141.

    Google Scholar 

  37. Riese RJ, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS. Uric acid crystal binding to renal inner medullary collecting duct cells in primary culture. J Am Soc Nephrol. 1990;1:187-192.

    CAS  PubMed  Google Scholar 

  38. Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG, Kleinman JG. Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol (Renal Fluid Electrolyte Physiol). 1992;262(31):F117-F184.

    Google Scholar 

  39. Riese RJ, Riese JW, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS. Specificity in calcium oxalate adherence to papillary epithelial cells in cultures. Am J Physiol. 1988;255:F1025-F1032.

    CAS  PubMed  Google Scholar 

  40. Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol (Renal Fluid Electrolyte Physiol). 1997;272:F55-F62.

    CAS  Google Scholar 

  41. Verkoelen CF, van der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding mocecule at the surface of migrating and proliferating MDCK cells. Kidney Int. 2000;58:1045-1054.

    Article  CAS  PubMed  Google Scholar 

  42. Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibitied by specific anions. Am J Physiol (Renal Fluid Electrolyte Physiol). 1995;268(37):F604-F612.

    CAS  Google Scholar 

  43. Sorokina EA, Kleinman JG. Cloning and preliminary characterization of a calcium-binding protein closely related to nucleolin on the apical surface of inner medullary collecting duct cells. J Biol Chem. 1999;274:27491-27496.

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi S, Wiessner J, Hasegawa A, Hung L, Mandel G, Mandel N. Calcium oxalate monohydrate crystal binding substance produced from Madin-Darby canine kidney cells. Int J Urol. 2002;9:501-508.

    Article  CAS  PubMed  Google Scholar 

  45. Sorokina EA, Wesson JA, Kleinman JG. An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol. 2004;15:2057-2065.

    Article  CAS  PubMed  Google Scholar 

  46. Kumar V, Farell G, Deganello S, Lieske JC. Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Amer Soc Neph. 2003;14:289-297.

    Article  CAS  Google Scholar 

  47. Lieske JC, Leonard R, Swift H, Toback FG. Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol (Renal Fluid Electrolyte Physiol). 1996;270(39):F192-F199. Abstract.

    CAS  Google Scholar 

  48. Yamate T, Kohri K, Umekawa T, Amasaki N, Isikawa Y, Kurita T. The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells. Eur Urol. 1996;30:388-393.

    CAS  PubMed  Google Scholar 

  49. Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T. Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol. 1998;160:1506-1512.

    Article  CAS  PubMed  Google Scholar 

  50. Wesson JA, Johnson RJMM, Beshensky AM, et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol. 2003;14:139-147.

    Article  CAS  PubMed  Google Scholar 

  51. Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol. 2007;293:F1935-F1943.

    Article  CAS  PubMed  Google Scholar 

  52. Sheng X, Jung T, Wesson JA, Ward MD. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA. 2005;102:267-272.

    Article  CAS  PubMed  Google Scholar 

  53. Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol. 2003;14:3155-3166.

    Article  CAS  PubMed  Google Scholar 

  54. Koka RM, Huang E, Lieske JC. Adhesion of uric acid crystals to the surface of renal epithelial cells. Am J Physiol Renal Physiol. 2000;278:F989-F998.

    CAS  PubMed  Google Scholar 

  55. Ombra MN, Casula S, Biino G, et al. Urinary glycosaminoglycans as risk factors for uric acid nephrolithiasis: case control study in a Sardinian genetic isolate. Urology. 2003;62:416-420.

    Article  PubMed  Google Scholar 

  56. Lieske JC, Walsh-Reitz MM, Toback FG. Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol (Renal Fluid Electrolyte Physiol). 1992;262(31):F622-F630.

    CAS  Google Scholar 

  57. Pak CY, Poindexter JR, Ms-Huet B, Pearle MS. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med. 2003;115:26-32.

    Article  CAS  PubMed  Google Scholar 

  58. Pak CYC. Potential etiologic role of brushite in the formation of calcium (renal) stones. J Cryst Growth. 1981;53:202-208.

    Article  CAS  Google Scholar 

  59. Lieske JC, Norris R, Toback FG. Adhesion of hydroxyapatite crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol. 1997;273:F224-F233.

    CAS  PubMed  Google Scholar 

  60. Mathoera RB, Kok DJ, Visser WJ, Verduin CM, Nijman RJ. Cellular membrane associated mucins in artificial urine as mediators of crystal adhesion: an in vitro enterocystoplasty model. J Urol. 2001;166:2329-2336.

    Article  CAS  PubMed  Google Scholar 

  61. Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2204;32:311-316.

    Article  Google Scholar 

  62. Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98:50-59.

    Article  CAS  PubMed  Google Scholar 

  63. Bambach CP, Robertson WG, Peacock M, Hill GL. Effect of intestinal surgery on the risk of urinary stone formation. Gut. 1981;22:257-263.

    Article  CAS  PubMed  Google Scholar 

  64. McDonald GB, Earnest DL, Admirand WH. Hyperoxaluria correlates with fat malabsorption in patients with sprue. Gut. 1977;18:561-566.

    Article  CAS  PubMed  Google Scholar 

  65. Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol. 2001;12:1986-1993.

    CAS  PubMed  Google Scholar 

  66. Robertson WG, Hughes H. Importance of mild hyperoxaluria in the pathogenesis of urolithiasis—new evidence from studies in the Arabian peninsula. Scanning Microsc. 1993;7:391-401.

    CAS  PubMed  Google Scholar 

  67. Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology. 2003;62:1123-1128.

    Article  PubMed  Google Scholar 

  68. Sumitra K, Pragasam V, Sakthivel R, Kalaiselvi P, Varalakshmi P. Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant. 2005;20:1407-1415.

    Article  CAS  PubMed  Google Scholar 

  69. Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005;33:65-69.

    Article  CAS  PubMed  Google Scholar 

  70. Khan SR, Finlayson B, Hackett RL. Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol. 1982;107:59-69.

    CAS  PubMed  Google Scholar 

  71. Jonassen JA, Kohjimoto Y, Scheid CR, Schmidt M. Oxalate toxicity in renal cells. Urol Res. 2005;33:329-339.

    Article  CAS  PubMed  Google Scholar 

  72. Khan SR. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol. 2004;98:e55-e60.

    Article  CAS  PubMed  Google Scholar 

  73. Cao LC, Jonassen J, Honeyman TW, Scheid C. Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells: implications for kidney stone disease. Am J Nephrol. 2001;21:69-77.

    Article  CAS  PubMed  Google Scholar 

  74. Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS. Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int. 2001;59:637-644.

    Article  CAS  PubMed  Google Scholar 

  75. Wiessner JH, Hasegawa AT, Hung LY, Mandel NS. Oxalate-induced exposure of phosphatidylserine on the surface of renal epithelial cells in culture. J Am Soc Nephrol. 1999;10(Suppl 14):S441-S445.

    CAS  PubMed  Google Scholar 

  76. Gambaro G, Valente ML, Zanetti E, et al. Mild tubular damage induces calcium oxalate crystalluria in a model of subtle hyperoxaluria: Evidence that a second hit is necessary for renal lithogenesis. J Am Soc Nephrol. 2006;17:2213-2219.

    Article  CAS  PubMed  Google Scholar 

  77. Greene EL, Farell G, Yu S, Matthews T, Kumar V, Lieske JC. Renal cell adaptation to oxalate. Urol Res. 2005;33:340-348.

    Article  CAS  PubMed  Google Scholar 

  78. Koul HK. Role of p38 MAP kinase signal transduction in apoptosis and survival of renal epithelial cells. Ann NY Acad Sci. 2003;1010:62-65.

    Article  CAS  PubMed  Google Scholar 

  79. Maroni PD, Koul S, Chandhoke PS, Meacham RB, Koul HK. Oxalate toxicity in cultured mouse inner medullary collecting duct cells. J Urol. 2005;174:757-760.

    Article  PubMed  Google Scholar 

  80. Maroni PD, Koul S, Meacham RB, Chandhoke PS, Koul HK. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells. Ann NY Acad Sci. 2004;1030:144-149.

    Article  CAS  PubMed  Google Scholar 

  81. Scheinman SJ, Cox JP, Lloyd SE, et al. Isolated hypercalciuria with mutation in CLCN5: relevance to idiopathic hypercalciuria. Kidney Int. 2000;57:232-239.

    Article  CAS  PubMed  Google Scholar 

  82. Luyckx VA, Leclercq B, Dowland LK, Yu AS. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression. Proc Natl Acad Sci USA. 1999;96:12174-12179.

    Article  CAS  PubMed  Google Scholar 

  83. Sikora P, Glatz S, Beck BB, et al. Urinary NAG in children with urolithiasis, nephrocalcinosis, or risk of urolithiasis. Pediatr Nephrol. 2003;18:996-999.

    Article  PubMed  Google Scholar 

  84. Williams CP, Child DF, Hudson PR, et al. Inappropriate phosphate excretion in idiopathic hypercalciuria: the key to a common cause and future treatment? J Clin Pathol. 1996;49:881-888.

    Article  CAS  PubMed  Google Scholar 

  85. Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol. 2005;37:1151-1161.

    Article  CAS  PubMed  Google Scholar 

  86. Prie D, Huart V, Bakouh N, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347:983-991.

    Article  CAS  PubMed  Google Scholar 

  87. Raeder H, Bjerknes R, Shaw N, Netelenbos C. A case of X-linked hypophosphatemic rickets (XLH): complications and the therapeutic use of cinacalcet. Eur J Endocrinol. 2008 Dec;159(Suppl 1):S101-5.

    Article  CAS  PubMed  Google Scholar 

  88. Chow FH, Taton GF, Boulay JP, Lewis LD, Remmenga EE, Hamar DW. Effect of dietary calcium, magnesium, and phosphorus on phosphate urolithiasis in rats. Invest Urol. 1980;17:273-276.

    CAS  PubMed  Google Scholar 

  89. Khan SR, Glenton PA. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol. 1995;153:811-817.

    Article  CAS  PubMed  Google Scholar 

  90. Evan AP, Lingeman J, Coe F, et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 2007;71:795-801.

    Article  CAS  PubMed  Google Scholar 

  91. Chen NX, O’Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62:1724-1731.

    Article  CAS  PubMed  Google Scholar 

  92. Wada T, McKee MD, Steitz S, Giachelli CM. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res. 1999;84:166-178.

    CAS  PubMed  Google Scholar 

  93. Sanchez-Lozada LG, Soto V, Tapia E, et al. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008;295:F1134-F1141.

    Article  CAS  PubMed  Google Scholar 

  94. Favus MJ, Coe FL. Clinical characteristics and pathogenetic mechanisms in hyperuricosuric calcium oxalate renal stone disease. Scand J Urol Nephrol. 1980;53:171-177.

    CAS  Google Scholar 

  95. Grover PK, Marshall VR, Ryall RL. Dissolved urate salts out calcium oxalate in undiluted human urine in vitro: implications for calcium oxalate stone genesis. Chem Biol. 2003;10:271-278.

    Article  CAS  PubMed  Google Scholar 

  96. Farell G, Huang E, Kim SY, Horstkorte R, Lieske JC. Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals. J Am Soc Nephrol. 2004;15:3052-3062.

    Article  PubMed  Google Scholar 

  97. Carr RJ. A new theory on the formation of renal calculi. Br J Urol. 1954;26:105-117.

    Google Scholar 

  98. Haggitt RC, Pitcock JA. Renal medullary calcifications: a light and electron microscopic study. J Urol. 1971;106:342-347.

    Google Scholar 

  99. Cifuentes D, Minon-Cifuentes J, Medina JA. New studies on papillary calculi. J Urol. 1987;137:1024-1029.

    Google Scholar 

  100. Ryall RL. The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res. 2008;36:77-97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack G. Kleinman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Kleinman, J.G. (2010). Interaction of Stone Components with Cells and Tissues. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics