Skip to main content

Training Implications for Stone Management

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

The potential to learn in the operating room is becoming increasingly limited by factors such as resident work hour restrictions, the increased cost associated with trainee involvement in the operating room, the demands on clinicians to increase productivity, the increased complexity of patient diagnoses seen in tertiary care medical centers, and the overall goal to decrease patient morbidity and mortality. Surgical educators are seeking alternative methods of training and developing simulated teaching environments in an effort to address these educational challenges. Endourology poses unique challenges, with steep learning curves for the surgeon, as it creates a visual image of the operative site that has altered depth perception, decreased tactile feedback, increased dependence on video monitors, and increased demand on hand–eye coordination. The importance of creating standardized curricula for training programs is becoming increasingly important for minimally invasive technologies. Curriculum designed for technical skill education involves setting goals and objectives at the commencement, designing interventions targeted to these goals, and developing assessment tools that can certify competency in the desired skills. A variety of teaching strategies have been utilized in the development of curricula for endourology including material-based models, animate and cadaveric models, and virtual reality simulation. All of these have their advantages and disadvantages and in combination provide a robust and comprehensive skills training platform to complement the cognitive training that is required for mastering endourologic concepts and techniques. With computer-based surgical simulation, a trainee may be truly evaluated objectively in the absence of bias for race, sex, or age. The integration of simulation into the surgical training curriculum will allow the trainee to acquire the basic surgical skills foundation and obtain performance levels according to predetermined proficiency levels for each stage of the training program. This then allows the surgical educator to concentrate on teaching the judgment and professionalism of an expert surgeon, and to strengthen the knowledge and interpretation of what is observed in the clinical setting in order to create a competent surgeon at both the cognitive and skills performance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallack M, Chao L. Resident work hours: the evolution of a revolution. Arch Surg. 2001;136(12):1426-1431.

    Article  CAS  PubMed  Google Scholar 

  2. Greenfield L. Limiting resident duty hours. Am J Surg. 2003;185(1):10-12.

    Article  PubMed  Google Scholar 

  3. Matsumoto E, Hamstra S, Radomski S, et al. A novel approach to endourological training: training at the Surgical Skills Center. J Urol. 2001;166(4):1261-1266.

    Article  CAS  PubMed  Google Scholar 

  4. Anastakis D, Wanzel K, Brown M, et al. Evaluating the effectiveness of a 2-year curriculum in a surgical skills center. Am J Surg. 2003;185(4):378-385.

    Article  PubMed  Google Scholar 

  5. Dubrowski A, Backstein D. The contributions of kinesiology to surgical education. J Bone Joint Surg Am. 2004;86-A(12):2778-2781.

    PubMed  Google Scholar 

  6. Krizek T. Ethics and philosophy lecture: surgery…Is it an impairing profession? J Am Coll Surg. 2002;194(3):352-366.

    Article  PubMed  Google Scholar 

  7. Kopta J. The development of motor skills in orthopaedic education. Clin Orthop. 1971;75:80.

    Article  CAS  PubMed  Google Scholar 

  8. Khan M, Tiernan W. The increasing significance of how to learn motor skills. Int J Surg. 2004;2(2):124-125.

    Article  CAS  PubMed  Google Scholar 

  9. Knudsen B, Matsumoto E, Chew B, et al. Randomized, controlled, prospective study validating the acquisition of percutaneous renal collecting system access skills using a computer based hybrid virtual reality surgical simulator: phase I. J Urol. 2006;176(5):2173-2178.

    Article  PubMed  Google Scholar 

  10. Chou D, Abdelshehid C, Clayman R, et al. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol. 2006;20(4):266-271.

    Article  PubMed  Google Scholar 

  11. Bridges M, Diamond D. The financial impact of teaching surgical residents in the operating room. Am J Surg. 1999;177(1):28-32.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider J, Coyle J, Ryan E, et al. Implementation and evaluation of a new surgical residency model. J Am Coll Surg. 2007;205(3):393-404.

    Article  PubMed  Google Scholar 

  13. Leape L. Error in medicine. JAMA. 1994;272(23):1851-1857.

    Article  CAS  PubMed  Google Scholar 

  14. Nuland S. Mistakes in the operating room: error and responsibility. N Engl J Med. 2004;351(13):1281-1283.

    Article  CAS  PubMed  Google Scholar 

  15. Way L. General surgery in evolution: technology and competence. Am J Surg. 1996;171(1):2-9.

    Article  CAS  PubMed  Google Scholar 

  16. Kohn L, Corrigan J, Donaldson M. To err is human: building a safer health system. Washington: National Academies Press; 2000.

    Google Scholar 

  17. Oliak D, Owens M, Schmidt H. Impact of fellowship training on the learning curve for laparoscopic gastric bypass. Obes Surg. 2004;14:197-200.

    Article  PubMed  Google Scholar 

  18. Corica F, Boker J, Chou D, et al. Short-term impact of a laparoscopic “mini-residency” experience on postgraduate urologists’ practice patterns. J Am Coll Surg. 2006;203(5):692-8.

    Article  PubMed  Google Scholar 

  19. Vlaovic P, McDougall E. New age beyond didactics. Sci World J. 2006;6:2370-2380.

    Google Scholar 

  20. Morrison K, MacNeily A. Core competencies in surgery: evaluating the goals of urology residency training in Canada. Can J Surg. 2006;49(4):259-266.

    PubMed  Google Scholar 

  21. Nicolaou M, Atallah L, James A, et al. The effect of depth perception on visual-motor compensation in minimal invasive surgery. Lect Notes Comput Sci. 2006;4091:156-163.

    Article  Google Scholar 

  22. Rassweiler J, Fornara P, Weber M, et al. Laparoscopic nephrectomy: the experience of the laparoscopy working group of the German Urologic Association. J Urol. 1998;160(1):18-21.

    Article  CAS  PubMed  Google Scholar 

  23. Jacomides L, Ogan L, Cadeddu J, et al. Use of a virtual reality simulator for ureteroscopy training. J Urol. 2004;171(1):320-323.

    Article  PubMed  Google Scholar 

  24. Daniels G, Garnett J, Carter M. Ureteroscopic results and complications: experience with 130 cases. J Urol. 1988;139(4):710-713.

    PubMed  Google Scholar 

  25. de la Rosette J, Gravas S, Muschter R, et al. Present practice and development of minimally invasive techniques, imaging and training in european urology: results of a survey of the European Society of Uro-Technology (ESUT). Eur Urol. 2003;44(3):346-351.

    Article  PubMed  Google Scholar 

  26. Watterson J, Beiko D, Kuan J, et al. A randomized prospective blinded study validating acquistion of ureteroscopy skills using a computer based virtual reality endourological simulator. J Urol. 2002;168(5):1928-1932.

    Article  PubMed  Google Scholar 

  27. Ballaro A, Briggs T, Garcia-Montes F, et al. A computer generated interactive transurethral prostatic resection simulator. J Urol. 1999;162(5):1633-1635.

    Article  CAS  PubMed  Google Scholar 

  28. Aydeniz B, Meyer A, Posten J, et al. The ‘HysteroTrainer’—an in vitro simulator for hysteroscopy and falloposcopy. Experimental and clinical background and technical realisation including the development of organ modules for electrothermal treatment. Contrib Gynecol Obstet. 2000;20:171-181.

    Article  CAS  PubMed  Google Scholar 

  29. Berg D, Raugi G, Gladstone H, et al. Virtual reality simulators for dermatologic surgery: measuring their validity as a teaching tool. Dermatol Surg. 2001;27(4):370-374.

    Article  CAS  PubMed  Google Scholar 

  30. Bro-Nielsen M, Tasto J, Cunningham R, et al. PreOp endoscopic simulator: a PC-based immersive training system for bronchoscopy. Stud Health Technol Inform. 1999;62:76-82.

    CAS  PubMed  Google Scholar 

  31. Edmond C, Heskamp D, Sluis D, et al. ENT endoscopic surgical training simulator. Stud Health Technol Inform. 1997;39:518-528.

    PubMed  Google Scholar 

  32. Martin J, Regehr G, Reznick R, et al. Objective structured assessment of technical skills (OSATS) for surgical residents. Br J Surg. 1997;84(2):273-278.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt R. A schema theory of discrete motor skills learning. Psycho Rev. 1975;82:225-260.

    Article  Google Scholar 

  34. Steinberg P, Merguerian P, Bihrie I, et al. The cost of learning robotic-assisted prostatectomy. Urology 2008; Epub ahead of print.

    Google Scholar 

  35. Steers W, Schaeffer A. Is it time to change the training of urology residents in the United States? J Urol. 2005;173(5):1451.

    Article  PubMed  Google Scholar 

  36. Martin R, Kehdy F, Allen J. Formal training in advanced surgical technologies enhances the surgical residency. Am J Surg. 2005;190(2):244-248.

    Article  PubMed  Google Scholar 

  37. Chaudhry A, Sutton C, Wood J, et al. Learning rate for laparoscopic surgical skills on MIST VR, a virtual reality simulator: quality of human-computer interface. Ann R Coll Surg Engl. 1999;81(4):281-286.

    CAS  PubMed  Google Scholar 

  38. Grillo H. To impart this art: the development of graduate surgical education in the United States. Surgery. 1999;125(1):1-14.

    CAS  PubMed  Google Scholar 

  39. Gawande A. Creating the educated surgeon in the 21st century. Am J Surg. 2001;181(6):551-556.

    Article  CAS  PubMed  Google Scholar 

  40. Hammond DL, Ketchum J, Schwatz B. Accreditation council on graduate medical education technical skills competency compliance: urologic surgical skills. J Am Coll Surg. 2005;201(3):454-457.

    Article  PubMed  Google Scholar 

  41. Smith A. A personal perspective on the origins of endourology and the endourological society. J Endourol. 2002;16(10):705-708.

    Article  PubMed  Google Scholar 

  42. Kommu S, Dickinson A, Rane A. Optimizing outcomes in laparoscopic urologic training: toward a standardized global consensus. J Endourol. 2007;21(4):378-385.

    Article  PubMed  Google Scholar 

  43. Chung B, Matin S, Ost M, et al. Fellowship in endourology, the job search, and setting up a successful practice: an insider’s view. J Endourol. 2008;22(3):551-557.

    Article  PubMed  Google Scholar 

  44. Brehmer M, Tolley D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42(2):175-179.

    Article  PubMed  Google Scholar 

  45. Dunnington G, Williams R. Addressing the new competencies for residents’ surgical training. Acad Med. 2003;78(1):14-21.

    Article  PubMed  Google Scholar 

  46. Heard J, Allen R, Clardy J. Assessing the needs of residency program directors to meet the ACGME general competencies. Acad Med. 2002;77(7):750.

    Article  PubMed  Google Scholar 

  47. Wignall GR, Denstedt JD, Preminger GM, et al. Surgical simulation: a urological perspective. J Urol. 2008;179(5):1690-1699.

    Article  PubMed  Google Scholar 

  48. Edison M, Horgan S, Helton W. Using small-group workshops to improve surgical residents’ technical skills. Acad Med. 2001;76(5):557-558.

    Article  CAS  PubMed  Google Scholar 

  49. Goldman L, McDonough M, Rosemond G. Stresses affecting surgical performance and learning: I. Correlation of heart rate, electrocardiogram, and operation simultaneously recorded on videotapes. J Surg Res. 1972;12(2):83-86.

    Article  CAS  PubMed  Google Scholar 

  50. Mongin C, Dufour F, Lattanzio F, et al. Evaluation of stress in surgical trainees: prospective study of heart rate during laparoscopic cholecystectomy. J Chir(Paris). 2008;145(2):138-142.

    Article  CAS  Google Scholar 

  51. Hoznek A, Salamon L, de la Taille A, et al. Simulation training in video-assisted urologic surgery. Curr Urol Rep. 2006;7(2):107-113.

    Article  PubMed  Google Scholar 

  52. Gawande AA. Creating the educated surgeon in the 21st century. Am J Surg. 2001;181:551-556.

    Article  CAS  PubMed  Google Scholar 

  53. Ericsson K. The road to excellence: the acquisition of expert performance in the arts and sciences, sports, and games. In: Ericsson KA, ed. The Acquisition of Expert Performance: An Introduction to Some of the Issues. Mahwah: Lawrence Erlbaum; 1996:1-50.

    Google Scholar 

  54. Hoznek A, Katz R, Gettman M, et al. Laparoscopic and robotic surgical training in urology. Curr Urol Rep. 2003;4(2):130-137.

    Article  PubMed  Google Scholar 

  55. Lancaster J, Casali J. Investigating pilot performance using mixed-modality simulated data link. Hum Factors. 2008;50(2):182-193.

    Article  Google Scholar 

  56. Schmidt C, Ramsauer B, Witzel K. Risk management in hospitals: standard operating procedures in aviation as a model for structuring medical communication. Z Orthop Unfall. 2008;146(2):175-178.

    Article  CAS  PubMed  Google Scholar 

  57. Miller D, Montie J, Faerber G. Evaluating the Accreditation Council on Graduate Medical Education core clinical competencies techniques and feasibility in a urology training program. J Urol. 2003;170(4):1312-1317.

    Article  PubMed  Google Scholar 

  58. Edison M, Horgan S, Helton W. Using small-group workshops to improve surgical residents’ technical skills. Acad Med. 2001;76(5):557-558.

    Article  CAS  PubMed  Google Scholar 

  59. Rouach Y, Timsit M, Delongchamps N. Laparoscopic partial nephrectomy: urology resident learning curve on a porcine model. Prog Urol. 2008;18(6):344-350.

    Article  CAS  PubMed  Google Scholar 

  60. Artibani W, Fracalanza S, Cavalleri S, et al. Learning curve and preliminary experience with da Vinci-assisted laparoscopic radical prostatectomy. Urol Int. 2008;80(3):237-244.

    Article  PubMed  Google Scholar 

  61. Haluck R, Krummel T. Computers and virtual reality for surgical education in the 21st century. Arch Surg. 2000;135(7):786-792.

    Article  CAS  PubMed  Google Scholar 

  62. Gates E. New surgical procedures: Can our patients benefit while we learn? Am J Obstet Gynecol. 1997;176:1293-1298.

    Article  CAS  PubMed  Google Scholar 

  63. Witzke D, Hoskins J, Mastrangelo M, et al. Immersive virtual reality used as a platform for perioperative training for surgical residents. Stud Health Technol Inform. 2001;81:577-583.

    CAS  PubMed  Google Scholar 

  64. Brehmer M, Tolley D. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42(2):175-189.

    Article  PubMed  Google Scholar 

  65. Webster’s Dictionary (on-line); 2007.

    Google Scholar 

  66. Tanriverdi O, Boylu U, Kendirci M, et al. The learning curve in the training of percutaneous nephrolithotomy. Eur Urol. 2007;52(2):206-211.

    Article  PubMed  Google Scholar 

  67. Matsumoto E, Hamstra S, Radomski S, et al. The effect of bench model fidelity on endourological skills: a randomised controlled study. J Urol. 2002;167(2):1243-1247.

    PubMed  Google Scholar 

  68. Matsumoto E, Pace K, Honey R. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006;13(7):896-901.

    Article  PubMed  Google Scholar 

  69. Bird VG, Fallon B, Winfield HN. Practice patterns in the treatment of large renal stones. J Endourol. 2003;17(6):355-363.

    Article  PubMed  Google Scholar 

  70. Strohmaier W, Giese A. Ex vivo training model for percutaneous renal surgery. Urol Res. 2005;33(3):191-193.

    Article  PubMed  Google Scholar 

  71. Opppenheimer P, Gupta A, Weghorst S, et al. The representation of blood flow in endourologic surgical simulations. Stud Health Technol Inform. 2001;81:365-371.

    Google Scholar 

  72. Strohmaier W, Giese A. Porcine urinary tract as a training model for ureterorenoscopy. Urol Int. 2001;66(1):30-32.

    Article  CAS  PubMed  Google Scholar 

  73. Zimmermann M. Ethical considerations in relation to pain in animal experimentation. Acta Physiol Scand Suppl. 1986;554:221-233.

    CAS  PubMed  Google Scholar 

  74. Rowan A. Is justification of animal research necessary? JAMA. 1993;269(9):1113-1114.

    Article  CAS  PubMed  Google Scholar 

  75. Sampaio F, Pereira-Sampaio M, Favorito L. The pig kidney as an endourologic model: anatomic contribution. J Endourol. 1998;12(1):45-50.

    Article  CAS  PubMed  Google Scholar 

  76. Pereira-Sampaio M, Favorito L, Sampaio F. Pig kidney: anatomical relationships between the intrarenal arteries and the kidney collecting system: applied study for urological research and surgical training. J Urol. 2004;172(5):2077-2081.

    Article  PubMed  Google Scholar 

  77. Evan A, Willis L, Connors B, et al. Shock wave lithotripsy induced renal injury. Am J Kidney Dis. 1991;179(4):445-450.

    Google Scholar 

  78. Evan A, Connors B, Lingeman J, et al. Branching patterns of the renal artery of the pig. Anat Rec. 1996;246(2):217-223.

    Article  CAS  PubMed  Google Scholar 

  79. Watkin N, Morris S, Rivens I, et al. High-intensity focused ultrasound ablation of the kidney in a large animal model. J Endourol. 1997;11(3):191-196.

    Article  CAS  PubMed  Google Scholar 

  80. McDougall E. Validation of surgical simulators. J Endourol. 2007;21(3):244-247.

    Article  PubMed  Google Scholar 

  81. Cheong J. The use of animals in medical education: a question of necessity vs. desirability. Theor Med. 1989;10(1):53-57.

    Article  CAS  PubMed  Google Scholar 

  82. English D. Using animals for the training of physicians and surgeons. Theor Med. 1989;10(1):43-52.

    Article  CAS  PubMed  Google Scholar 

  83. Self D. The use of animals in medical education and research. Theor Med. 1989;10(1):9-19.

    Article  CAS  PubMed  Google Scholar 

  84. Scharmann W, Teutsch G. Ethical considerations on animal experiments. ALTEX. 1994;11(4):191-198.

    PubMed  Google Scholar 

  85. Laguna M, Hatzinger M, Rassweiler J. Simulators and endourological training. Curr Opin Urol. 2002;12(3):209-215.

    Article  PubMed  Google Scholar 

  86. Pirkmajer B, Leusch G. A bladder-prostate model on which to practice using transurethral resection instruments. Urologe A. 1977;16(6):336-338.

    CAS  PubMed  Google Scholar 

  87. Habib H, Berger J, Winter C. Teaching transurethral surgery using a cow’s udder. J Urol. 1965;93:77-79.

    CAS  PubMed  Google Scholar 

  88. Narwani K, Reid E. Teaching transurethral surgery using cadaver bladder. J Urol. 1969;101(1):101.

    CAS  PubMed  Google Scholar 

  89. Fiddian R. A method of training in periurethral resection. Br J Urol. 1967;39(2):192-193.

    Article  CAS  PubMed  Google Scholar 

  90. Cervantes L, Keitzer W. Endoscopic training in urology. J Urol. 1960;84:585-586.

    CAS  PubMed  Google Scholar 

  91. Trindale J, Lauenschlager M, de Araujo C. Endoscopic surgery: a new teaching method. J Urol. 1981;126(2):192.

    Google Scholar 

  92. Ogan K, Jacomides L, Shulman M, et al. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172(2):667-671.

    Article  PubMed  Google Scholar 

  93. Wines MP, Lamb A, Argyropoulos AN, et al. Blood splash injury: an underestimated risk in endourology. J Endourol. 2008;22(6):1183-1187.

    Article  PubMed  Google Scholar 

  94. Anderson R, O’Hare M, Balls M, et al. The availability of human tissue for biomedical research: the report and recommendations of the ECVAM workshop 32. Altern Lab Anim. 1998;26(6):763-777.

    PubMed  Google Scholar 

  95. Gordinier M, Granai C, Jackson N, et al. The effects of a course in cadaver dissection on resident knowledge of pelvic anatomy: an experimental study. Obstet Gynecol. 1995;86(1):137-139.

    Article  CAS  PubMed  Google Scholar 

  96. Issenberg S, McGaghie W, Hart I, et al. Simulation technology for health care professional skills training and assessment. JAMA. 1999;282(9):861-866.

    Article  CAS  PubMed  Google Scholar 

  97. Anastakis D, Regehr G, Reznick R, et al. Assessment of technical skills transfer from the bench training model to the human model. Am J Surg. 1999;177(2):167-170.

    Article  CAS  PubMed  Google Scholar 

  98. Darzi A, Smith S, Taffinder N. Assessing operative skill. BMJ. 1999;318(7188):887-888.

    CAS  PubMed  Google Scholar 

  99. Wilhelm DM, Ogan K, Roehrborn CG, et al. Assessment of basic ndoscopic performance using virtual reality simulator. J Am Coll Surg. 2002;195:675.

    Article  PubMed  Google Scholar 

  100. Reich O, Noll U, Gratzke C, et al. High-level virtual reality simulator for endourologic procedures of lower urinary tract. Urology. 2006;67:1144.

    Article  PubMed  Google Scholar 

  101. Margulis V, Matsumoto E, Knudsen B, et al. Percutaneous renal collecting system access: can virtual reality training shorten the learning curve? J Urol suppl. 2005;173:315. Abstract 1162.

    Google Scholar 

  102. Accreditation Council for Graduate Medical Education. Urology Residency Case Log Report. Chicago: ACGME; 2004.

    Google Scholar 

  103. de la Rosette J, Laguna M, Rassweiler J, et al. Training in percutaneous nephrolithotomy—a critical review. Eur Urol 2008; Epub ahead of print.

    Google Scholar 

  104. Tanriverdi O, Boylu U, Kendirci M, et al. The learning curve in the training of percutaneous nephrolithotomy. Eur Urol. 2007;52(1):206-211.

    Article  PubMed  Google Scholar 

  105. Aucar J, Groch N, Troxel S, et al. A review of surgical simulation with attention to validation methodology. Surg Laparosc Endosc Percutan Tech. 2005;15(2):82-89.

    Article  PubMed  Google Scholar 

  106. Michel M, Knoll T, Kohrmann K, et al. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 2002;89(3):174-177.

    Article  CAS  PubMed  Google Scholar 

  107. Gallagher A, Ritter E, Satava R. Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surg Endosc. 2003;17(10):1525-1529.

    Article  CAS  PubMed  Google Scholar 

  108. McDougall E, Corica F, Boket J, et al. Construct validity testing of a laparoscopic surgical simulator. J Am Coll Surg. 2006;202(5):779-787.

    Article  PubMed  Google Scholar 

  109. Nedas T, Challacombe B, Dasgupta P. Virtual reality in urology. BJU Int. 2004;94(3):255-257.

    Article  PubMed  Google Scholar 

  110. Satava R. Historical review of surgical simulation- a personal perspective. World J Surg. 2008;32(2):141-148.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldrin Joseph R. Gamboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Gamboa, A.J.R., McDougall, E.M. (2010). Training Implications for Stone Management. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_48

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics