Skip to main content

Potential of Stem Cell to Tailor the Bone-Ceramic Interface for Better Fixation of Orthopedic Implants

  • Chapter
  • First Online:
Frontiers of Cord Blood Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hench LL and Wilson J. An Introduction to Bioceramics. London: World Scientific; 1993.

    Google Scholar 

  2. Lawson AC and Czernuska JT. Collagen-Calcium Phosphate Composites. Proc. Inst. Mech. Eng. H. 1998; 212: 413–25.

    PubMed  CAS  Google Scholar 

  3. Hulbert SF, Bokros JC, Hench LL et al. Ceramics in Clinical Applications: Past, Present and Future. In: Vincenzini P, editor. High Tech Ceramics. Amsterdam, the Netherlands: Elsevier; 1987. p. 189–213.

    Google Scholar 

  4. de Groot K. Bioceramics of Calcium Phosphate. Boca Raton, FL: CRC Press; 1983.

    Google Scholar 

  5. de Groot K, Klein CPAT, Wolke JGC et al. Chemistry of Calcium Phosphate Bioceramics. In: Yamamuro T, Hench LL and Wilson J, editors. Handbook of Bioactive Ceramics, Vol. II. Boca Raton, FL: C.R.C Press; 1990. p. 3–15.

    Google Scholar 

  6. Klein CPAT, Wolke JGC and de Groot K. Stability of Calcium Phosphate Ceramics and Plasma Sprayed Coating. In: Hench LL and Wilson J, editors. An Introduction to Bioceramics. London, UK: World Scientific; 1993. p. 199–21.

    Google Scholar 

  7. De Groot K. Calcium Phosphate Bioceramics: Their Future in Clinical Practice. Rev. Eur. Tech. Biomed. 1991; 13: 88–91.

    Google Scholar 

  8. Barre F, Laryrolle P, van Bitterswijk CA et al. Biomimetic Coatings on Titanium: A Crystal Growth Study of Octacalcium Phosphate. J. Mater. Sci. Mater. Med. 2001; 12: 529–34.

    Article  Google Scholar 

  9. Barre F, Stigter M, Layrolle P et al. In Vitro Dissolution of Various Calcium Phosphate Coatings on Ti-6Al-4 V. Bioceramics 2001; 13: 67–70.

    Google Scholar 

  10. Kokubo T, Kushitani H, Sakka S et al. Solutions able to Reproduce In Vivo Surface Structure Changes in Bioactive Glass-Ceramics A/W. J. Biomed. Mater. Res. 1990; 24: 721–34.

    Article  PubMed  CAS  Google Scholar 

  11. Kundu B and Basu D. Ceramics for Biomedical Applications-An Insight. Sci. Cult. 2005; 71[5–6]: 144–58.

    Google Scholar 

  12. Hench LL and Ethridge EC. Biomaterials: An Interfacial Approach. New York, USA: Academic Press; 1982.

    Google Scholar 

  13. Black J and Hastings G. Handbook of Biomaterial Properties. London, UK: Chapman and Hall; 1998.

    Google Scholar 

  14. Willmann G. Ceramic Components for Total Hip Arthropasty. Orthop. Int. Ed. 1997; 5[4]: 110–15.

    Google Scholar 

  15. Dorre E and Dawihl W. Ceramic Hip Endoprotheses. In: Hastings GW and Williams DF, editors. Mechanical Properties of Biomaterials. New York: Wiley; 1980. p. 113–27.

    Google Scholar 

  16. Basu D. Fatigue Behaviour of Fine-Grained Alumina Hip-Joint Heads Under Normal Walking Conditions. Sadhana 2003; 28[3, 4]: 589–600.

    Article  CAS  Google Scholar 

  17. Williams DF. The Biocompatibility and Clinical Uses of Calcium Phosphate Ceramics. In: Williams DF, editor. Biocompatibility of Tissue Analogs, Vol. II. Boca Raton, FL: CRC Press; 1985. p. 43–6.

    Google Scholar 

  18. Le Geros RF, Bone G and Le Geros RZ. Type of H2O in Human Enamel and Precipitated Apatites. Calcif. Tissue Res. 1978; 26: 111–8.

    Article  Google Scholar 

  19. de Groot K. Effect of Porosity and Physicochemical Properties on the Stability, Resorption and Strength of Calcium Phosphate Ceramics. In: Ducheyne P, Lemons J, editors. Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523. New York Academy of Science, New York, USA, 1988; p. 227–34.

    Google Scholar 

  20. de Groot K, Tencer A., Waite P., Nichols J., and Kay J. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Dental and other head and neck uses, In: Ducheyne P., Lemons J., editors. Bioceramics: Material Characteristics vs. in vivo Behaviour Vol. 523., New York Academy of Sciences, New York, USA, 1988; p. 272–277.

    Google Scholar 

  21. Jarcho M. Calcium Phosphate Ceramics as the Hard Tissue Prosthetics. Clin. Orthop. Relat. Res. 1981; 157: 259–78.

    PubMed  CAS  Google Scholar 

  22. Krajewski A, Ravaglioli A, Roncari E et al. Porous Ceramic Bodies for Drug Delivery. J. Mater. Sci. Mater. Med. 2000; 12: 763–71.

    Article  Google Scholar 

  23. Kelly A. Strong Solids. London: Oxford University Press, 1971. Translated under the title. Vysokoprochnye Materialy. Moscow: Mir, 1976.

    Google Scholar 

  24. Suchanek W and Yoshimura M. Processing and Properties of HA-Based Biomaterials for Use as Hard Tissue Replacement Implants. J. Mater. Res. Soc. 1998; 13[1]: 94–103.

    Article  CAS  Google Scholar 

  25. Hosoi K, Hashida T, Takashi T et al. New Processing Techniques for the hydroxyapatite Ceramics by the Hydrothermal Hot-Processing Method. J. Am. Ceram. Soc. 1996; 79: 2771–4.

    Article  CAS  Google Scholar 

  26. Hench LL. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991; 75: 1487–510.

    Article  Google Scholar 

  27. Le Geros RZ. Biodegradation and Bioresorption of Calcium Phosphate Ceramics. Clin. Mater. 1993; 14: 65–88.

    Article  Google Scholar 

  28. De With G, Van Dijk HJA, Hattu N et al. Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxyapatite. J. Mater. Sci. 1981; 16: 1592–8.

    Article  Google Scholar 

  29. Mizuno M, and Saito H, Preparation of Highly Pure Fine Mullite Powder. J. Am. Ceram. Soc., 1989; 72[3], 377–382.

    Google Scholar 

  30. Orlovskii VP, Komlev VS and Barinov SM. Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorg. Mater. 2002; 38: 973–84.

    Article  CAS  Google Scholar 

  31. Ganeles J, Listgarten MA and Evian CI. Ultrastructure of Durapatite-Periodontal Tissue Interface in Human Intrabony Defects. J. Periodontol. 1986; 57: 133–40.

    PubMed  CAS  Google Scholar 

  32. Denissen H, Mangano C and Cenini G. Hydroxylapatite Implants. India: Piccin Nuova Libraria, S.P.A, 1985.

    Google Scholar 

  33. Seibert J and Nyman S. Localised Ridge Augmentation in Dogs: A Pilot Study Using Membranes and Hydroxyapatite. J. Periodontol. 1990; 61: 157–65.

    PubMed  CAS  Google Scholar 

  34. Hing KA, Best SM, Tanner KA et al. Quantification of Bone Ingrowth within Bone Derived Porous Hydroxyapatite Implants of Varying Density. J. Mater. Sci. Mater. Med. 1999; 10: 633–70.

    Google Scholar 

  35. Lu JX, Flautre B and Anselme K. Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo. J. Mater. Sci. Mater. Med. 1999; 10: 111–20.

    Article  PubMed  CAS  Google Scholar 

  36. Yamamoto M, Tabata Y, Kawasakii H et al. Promotion of Fibrovascular Tissue Ingrowth into Porous Sponges by Basic Fibroblast Growth Factor. J. Mater. Sci. Mater. Med. 2000; 11: 213–8.

    Article  PubMed  CAS  Google Scholar 

  37. Sinha MK, Basu D and Sen PS. Porous Hydroxyapatite Ceramic and its Clinical Applications. Ceram. Asia 2000; 49: 102–4.

    CAS  Google Scholar 

  38. Shimizu T, Zerwekh JE, Videman T et al. Bone Ingrowth into Porous Calcium Phosphate Ceramics. Influence of Pulsing Electromagnetic Field. J. Orthop. Res. 1988; 6: 248–59.

    Article  PubMed  CAS  Google Scholar 

  39. Kundu B, Sinha MK and Basu D. Development of Bio-active Integrated Ocular Implant for Anophthalmic Human Patients. Trends in Biomaterials and Artificial Organs, 2002; 16: 1–4.

    Google Scholar 

  40. Barre F, Laryrolle P, van Bitterswijk CA et al. Biomimetic Ca-P Coating on Ti-6Al-4 V: Crystal Growth Study of Octacalcium Phosphate and Inhibition by Mg2+ and HCO- 3. Bone 1999; 25: 107S–11S.

    Article  Google Scholar 

  41. Chakraborty J, Sinha MK and Basu D, Biomolecular Template Induced Biomimetic Coating of Hydroxyapatite on SS 316 L Substrate. J. Am. Ceram. Soc., 2007; 90[4]: 1258–1261.

    Google Scholar 

  42. Sinha MK, Sen PS and Basu D. Synthesis, Sintering and Microstructure of Beta-Tricalcium Phosphate for Prosthetic Applications. J. Ind. Chem. Soc. 2001; 78[8]: 386 1/N388.

    CAS  Google Scholar 

  43. Hench LL, Bioceramics. J. Am. Ceram. Soc. 1998; 81: 1705–28.

    Article  CAS  Google Scholar 

  44. Gosain AK, Bioactive Glass for Bone Replacement in Craniomaxillofacial Reconstruction. Plastic & Reconstructive Surgery. 2004; 114(2): 590–593.

    Google Scholar 

  45. Bromer H, Deutscher K, Blencke B et al. Properties of the Bioactive Implant Material ‘Ceravital’. Sci. Ceram. 1977; 9: 219–25.

    Google Scholar 

  46. Kokubo T, Ito S, Sakka S et al. Formation of a high strength bioactive Glass-Ceramic in the System MgO-CaO- SiO2- P2O5. J. Mater. Sci. 1986; 21: 536–40.

    Article  CAS  Google Scholar 

  47. Kitsugi T, Yamamuro T and Kokubo T. Bonding Behaviour of a Glass-Ceramic Containing Apatite and Wollastonite in Segmental Replacement of Rabbit Tibia under Load Bearing Conditions. J. Bone Joint Surg. Am. 1989; 71A: 264–72.

    Google Scholar 

  48. Yoshii S, Kakutani Y, Yamamuro T et al. Strength of Bonding between A/W Glass Ceramic and the Surface of Bone Cortex. J. Biomed. Mater. Res. 1988; 22: 327–38.

    Article  PubMed  CAS  Google Scholar 

  49. Yamamuro T, Shikata J, Kakutani Y et al. Novel Methods for Clinical Applications of Bioactive Ceramics. In: Ducheyne P, Lemons D, editors. Bioceramics: Material Characteristics vs in vivo Behaviour, Vol. 523. New York, USA: Annals of New York Academy of Science; 1988; p. 107–114.

    Google Scholar 

  50. Yamamuro T, Hench LL and Wilson J, editors. Handbook on Biocative Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I. Boca Raton, FL: CRC Press; 1990.

    Google Scholar 

  51. Yamamuro T. Replacement of the Spine with Bioactive Glass-Ceramic Prostheses. In: Yamamuro T, Hench LL and Wilson J, editors. Handbook of Bioactive Ceramics: Bioactive Glasses and Glass Ceramics, Vol. I. Florida, Boca Raton, USA: CRC Press; 1990. p. 343–52.

    Google Scholar 

  52. Yamamuro T. A/W Glass –Ceramic: Clinical Applications. In: Hench LL and Wilson J, editors. An Introduction to Bioceramics. London, UK: World Scientific; 1993 p. 89–104.

    Google Scholar 

  53. Salame K, Quaknine G, Razon N et al. The Use of Carbon Fibre Cages in Anterior Cervical Interbody Fusion. Neurosurg. Focus 2002; 12: 1–5.

    Article  Google Scholar 

  54. Robbins MM, Vaccaro AR and Madigan L. The Use of Bioabsorbable Implants in Spine Surgery. Neurosurg. Focus 2004; 16: 1–7.

    Article  Google Scholar 

  55. Itoh S, Kikuchi M, Koyama Y et al. Development of an Artificial Vertebral Body Using a Novel Biomaterial, Hydroxyapatite/Collagen Composite. Biomaterials 2002; 23: 3919–26.

    Article  PubMed  CAS  Google Scholar 

  56. Stanley HR, Hall MB, Clark AE et al. Using 45S5 Bioglass Cones as Endosseous Ridge Maintenance Implants to prevent Alveolar Ridge Resorptions-A 5 Year Evaluation. Int. J. Oral Maxillofac. Implants 1997; 12: 95–105.

    PubMed  CAS  Google Scholar 

  57. Stanley HR, Clark AE and Hench LL. Alveolar Ridge Maintenance Implants. In: Hench LL and Wilson J, editors. Clinical Performance of Skeletal Prostheses. London, UK: Chapman and Hall; 1996. p. 255–70.

    Google Scholar 

  58. Reck R, Storkel S and Meyer A. Bioactive Glass-Ceramics in Middle Year Surgery: an 8-Year Review. In: Ducheyne P, Lemons D, editors. Bioceramics: Material Characteristics vs in vivo Behaviour, Vol. 523. New York, USA: Annals of New York Academy of Science; 1988. p. 100.

    Google Scholar 

  59. Merwin E. Review of Bioactive Materials for Ottologic and Maxillofacial Applications. In: Yanamuro T, Hench LL and Wilson J, editors. Handbook of Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I. Boca Raton, FL: USA; 1990. p. 323–8.

    Google Scholar 

  60. Wilson J, Douek E, Rust K et al. Bioglass Middle Ear Devices: Ten Year Clinical Results. In: Wilson J, Hench LL and Greenspan D, editors. Bioceramics, Vol. 8. Oxford, UK: Pergamon/Elsevier; 1995. p. 239–46.

    Google Scholar 

  61. Lobel K. Ossicular Replacement Prostheses. In: Hench LL and Wilson J, editors. Clinical Performance of Skeletal Prostheses. London, UK: Chapman and Hall, 1996. p. 214–36.

    Google Scholar 

  62. Pester D, Jahnke K. Ceramic Implants in Otologic Surgery. Am. J. Otol. 1981; 3: 104–8.

    Google Scholar 

  63. Bonfield W et al. Hydroxyapatite Reinforced Polyethylene – a Mechanically Compatible Implant Material for Bone Replacement. Biomaterials 1981; 2: 185–6.

    Article  PubMed  CAS  Google Scholar 

  64. Downs RN, Vardy S, Tanner KE et al. Hydroxyapatite–Polyethylene Composite in Orbital Surgery. Bioceramics. 1991; 4: 239–46.

    Google Scholar 

  65. Dornhoffer JL. Hearing Results with the Dornhoffer Ossicular Replacement Prostheses. Laryngoscope. 1991; 108: 531.

    Article  Google Scholar 

  66. Langer R et al. Principles of Tissue Engineering. San Diego: Academic Press, 1997.

    Google Scholar 

  67. Cao W, Hench LL. Bioactive Materials. Ceram. Int. 1996; 22: 493–507.

    Article  CAS  Google Scholar 

  68. Hench LL, West JK. Biological Application of Bioactive Glasses. Life Chem. Rep. 1996; 13: 187–241.

    CAS  Google Scholar 

  69. Wallace KE, Hill RG, Pembroke JT et al. Influence of Sodium Oxide Content on Bioactive Glass Properties. J. Mater. Sci. Mater. Med. 1999; 10: 697–701.

    Article  PubMed  CAS  Google Scholar 

  70. Ducheyne P, Qui Q. Bioactive Ceramics: The Effect of Surface Reactivity on Bone Formation and Bone Cell Function. Biomaterials 1999; 20: 2287–303.

    Article  PubMed  CAS  Google Scholar 

  71. Vats A, Tolley NS, Polak JM et al. Stem Cells: Sources and Applications. Clin. Otolaryngol. 2002; 27: 227–32.

    Article  PubMed  CAS  Google Scholar 

  72. Laurencin CT, Ambrosio AMA, Borden MD et al. Tissue Engineering: Orthopedic Applications. Annu. Rev. Biomed. Eng. 1999; 1: 19–46.

    Article  PubMed  CAS  Google Scholar 

  73. Ito Y, Tanaka N, Fujimoto Y et al. Bone Formation Using Novel Interconnected Porous Calcium Hydroxyapatite Ceramic Hybridized with Cultured Marrow Stromal Stem Cells Derived from Green Rat. J. Biomed. Mater. Res. A. 2004; 69: 454–61.

    Article  PubMed  Google Scholar 

  74. Bo B, Wang CY, Guo XM. Repair of Cranial Defects with Bone Marrow Derived Mesenchymal Stem Cells and β-TCP Scaffold in Rabbits. 1: Zhongguo Xiu Fu Chong, Jian Wai Ke Za Zhi, 2003; 17[4]: 335–8.

    Google Scholar 

  75. Yamada V, Boo JS, Ozawa R et al. Bone Regeneration following Injection of Mesenchymal Stem Cells and Fibrin Glue with a Biodegradable Scaffold. J. Craniomaxillofac. Surg. 2003; 31[1]: 27–33.

    PubMed  Google Scholar 

  76. Arinzeh TL, Tran T, Mcalary J et al. A Comparative Study of Biphasic Calcium Phosphate Ceramics for Human Mesenchymal Stem Cell Induced Bone Formation. Biomaterials 2005; 26: 3631–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Phillip Stubblefield Niranjan Bhattacharya

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chakraborty, J., Basu, D. (2009). Potential of Stem Cell to Tailor the Bone-Ceramic Interface for Better Fixation of Orthopedic Implants. In: Stubblefield, P., Bhattacharya, N. (eds) Frontiers of Cord Blood Science. Springer, London. https://doi.org/10.1007/978-1-84800-167-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-167-1_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-166-4

  • Online ISBN: 978-1-84800-167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics