Skip to main content

Part of the book series: Texts in Computer Science ((TCS))

  • 6290 Accesses

Abstract

In this chapter we described how to compute the unitary matrix corresponding to a given quantum circuit, and how to compute a quantum circuit that achieves a given unitary matrix. In the forward direction (circuit to matrix) three matrix products turn out to be useful. The direct product (also known as the tensor or Kroenecker product) is used to describe quantum gates that act in parallel. Such gates are drawn vertically aligned over distinct subsets of qubits in quantum circuits. Similarly, the dot product is used to describe quantum gates that act sequentially. Sequential gates are drawn one after the other from left to right in a quantum circuit. When mapping from a sequential quantum circuit to its corresponding unitary matrix remember that if the circuit shows gate A acting first, then gate B, then gate C, the corresponding dot product describing these steps is CBA, where the ordering is reversed. Finally, we introduced the direct sum, which describes controlled quantum gates. These apply a quantum gate to some “target” subset of qubits depending on the qubit values on another set of “control” qubits. The controlling values can be 0 (white circles) or 1 (black circles), and combinations of control values are allowed. We remind you that in controlled quantum gates we do not have to read the control value in order to determine the action. Instead, the controlled quantum gates apply all the control actions consistent with the quantum state of the control qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source: Comment made by physicist Bruce Knapp of Columbia University to reporter William J. Broad recounted in “With Stakes High, Race is on for Fastest Computer of All” from the 1st February 1983 issue of the New York Times. In the 1980’s Japan and the U.S. were racing to make faster and faster supercomputers. Knapp was commenting on the capabilities of a new classical supercomputer he and his colleagues were developing. However, the quotation is even more fitting for quantum computers.

  2. 2.

    This data is synthetic and was generated using the piecewise continuous function f(t)=5t 2+3 (for −2≤t<1) and f(t)=−t 3+9 (for 1≤t≤2) and shifted versions thereof.

  3. 3.

    Note that it is purely a matter of convention whether we pick ω=exp (+2πi/N), or ω=exp (−2πi/N) since exp (+2πi/N)N=exp (−2πi/N)N=1. Physicists tend to use the former and electrical engineers the latter. The two versions of the transform are the inverse of one another. It does not matter which version we pick so long as we use it consistently.

  4. 4.

    An orthonormal basis for a vector space is a set of vectors such that the overlap between any pair of distinct vectors is 0, i.e., 〈ψ i |ψ j 〉=0,iffij, and the overlap of a vector with itself is 1, i.e., ∀i,〈ψ i |ψ i 〉=1.

  5. 5.

    N.B. The superscript is always an even number.

References

  1. D. Abrams and S. Lloyd, “Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors,” Phys. Rev. Lett., Volume 83, Issue 24 (1999) pp. 5162–5165.

    Article  Google Scholar 

  2. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. Computer, Volume C-23, Issue 1 (1974) pp. 90–93.

    Article  MathSciNet  Google Scholar 

  3. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary Gates for Quantum Computation,” Phys. Rev. A, Volume 52 (1995) pp. 3457–3467.

    Article  Google Scholar 

  4. A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, “Approximate Quantum Fourier Transform and Decoherence,” Phys. Rev. A, Volume 54, Issue 1 (1996) pp. 139–146.

    Article  MathSciNet  Google Scholar 

  5. H. Barnum, H. J. Bernstein, and L. Spector, “Quantum Circuits for OR and AND of ORs,” Journal of Physics A: Mathematical and General, Volume 33, Issue 45 (2000) pp. 8047–8057.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Brassard, P. Høyer, and A. Tapp, “Quantum Counting,” arXiv:quant-ph/9805082v1 (1998).

  7. A. Bundy, The Computer Modelling of Mathematical Reasoning, Academic Press, London (1983) ISBN 0-12-141352-0.

    MATH  Google Scholar 

  8. G. Cybenko, Reducing Quantum Computations to Elementary Unitary Operations, Computing in Science and Engineering, IEEE Computer Society, Los Alamitos (2001) pp. 27–32.

    Google Scholar 

  9. I. Daubechies, “Discrete Sets of Coherent States and Their Use in Signal Analysis,” in Differential Equations and Mathematical Physics, Volume 1285, eds. I. W. Knowles and Y. Saito, Springer, Berlin (1987) pp. 73–82.

    Chapter  Google Scholar 

  10. I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Comm. Pure & Appl. Math., Volume 41, Issue 7 (1988) pp. 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Daubechies, “Time-frequency Localization Operators: a Geometric Phase Space Approach,” IEEE Trans. Inf. Theory, Volume 34, Issue 4 (1988) pp. 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Daubechies, “Orthonormal Bases of Wavelets with Finite Support—Connection with Discrete Filters,” in Proceedings of the 1987 International Workshop on Wavelets and Applications, Marseille, France, eds. J. M. Combes, A. Grossmann, and Ph. Tchamitchian, Springer, Berlin (1989).

    Google Scholar 

  13. I. Daubechies, “The Wavelet Transform, Time-frequency Localization and Signal Analysis,” IEEE Trans. Inf. Theory, Volume 36, Issue 5 (1990) pp. 961–1005.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Daubechies and T. Paul, “Wavelets—Some Applications,” in Proceedings of the International Conference on Mathematical Physics, eds. M. Mebkhout and R. Seneor, World Scientific, Marseille (1987) pp. 675–686.

    Google Scholar 

  15. D. P. DiVincenzo, “Two-Bit Gates are Universal for Quantum Computation,” Phys. Rev. A, Volume 51 (1995) pp. 1015–1022.

    Article  Google Scholar 

  16. D. P. DiVincenzo and J. Smolin, “Results on Two-Bit Gate Design for Quantum Computers,” in Proceedings of the Workshop on Physics and Computation, IEEE Computer Society Press, Dallas (1994) pp. 14–23.

    Chapter  Google Scholar 

  17. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, “Universal Quantum Computation with the Exchange Interaction,” Nature (London), Volume 408 (2000) pp. 339–342.

    Article  Google Scholar 

  18. P. Echternach, C. P. Williams, S. C. Dultz, S. Braunstein, and J. P. Dowling, “Universal Quantum Gates for Single Cooper Pair Box Based Quantum Computing,” Quantum Information and Computation, Volume 1 (2001) pp. 143–150.

    Google Scholar 

  19. A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, “Monte Carlo Simulations: Hidden Errors from “Good” Random Number Generators,” Phys. Rev. Lett., Volume 69, Issue 23 (1992) pp. 3382–3384.

    Article  Google Scholar 

  20. A. Fijany and C. P. Williams, Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits, Lecture Notes in Computer Science, Volume 1509, Springer, Berlin (1999) pp. 10–33.

    Google Scholar 

  21. G. Fishman, Monte Carlo: Concepts, Algorithms, and Application, Springer, Berlin (1996), p. 7.

    Book  Google Scholar 

  22. A. Gepp and P. Stocks, “A Review of Procedures to Evolve Quantum Algorithms,” Genetic Programming and Evolvable Machines, Volume 10, Issue 2 (2009) pp. 181–228.

    Article  Google Scholar 

  23. R. Gingrich and C. P. Williams, “Non-Unitary Probabilistic Quantum Computing,” in Proceedings of the Winter International Symposium on Information and Communication Technologies, Hyatt Regency Cancun, Mexico, 5th–8th January (2004).

    Google Scholar 

  24. G. Golub and C. van Loan, Matrix Computations, Third Edition, Johns Hopkins University Press, Baltimore (1996).

    MATH  Google Scholar 

  25. L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Phys. Rev. Lett., Volume 79, Issue 2 (1997) pp. 325–328.

    Article  Google Scholar 

  26. L. K. Grover, “Quantum Computers can Search Rapidly by Using Almost any Transformation,” Phys. Rev. Lett., Volume 80, Issue 19 (1998) pp. 4329–4332.

    Article  Google Scholar 

  27. L. K. Grover, “Synthesis of Quantum Superpositions by Quantum Computation,” Phys. Rev. Lett., Volume 85, Issue 6 (2000) pp. 1334–1337.

    Article  Google Scholar 

  28. V. Kendon and O. Maloyer, “Optimal Computation with Non-unitary Quantum Walks,” Theoretical Computer Science, Volume 394, Issue 3 (2008) pp. 187–196.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Klappenecker and M. Roetteler, “Discrete Cosine Transforms on Quantum Computers,” IEEE ISPA01, Pula, Croatia (2001).

    Google Scholar 

  30. A. Klappenecker and M. Rötteler, “Quantum Software Reusability,” International Journal of Foundations of Computer Science, Volume 14, Issue 5 (2003) pp. 777–796.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Klappenecker and M. Rötteler, “Engineering Functional Quantum Algorithms,” Phys. Rev. A, Volume 67 (2003) 010302.

    Article  MathSciNet  Google Scholar 

  32. M. Lukac and M. Perkowski, “Evolving Quantum Circuits Using Genetic Algorithm,” in Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), 15th–18th July (2002) p. 177.

    Google Scholar 

  33. M. Lukac and M. Perkowski, “Evolutionary Approach to Quantum Symbolic Logic Synthesis,” in Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC2008), June (2008) pp. 3374–3380.

    Google Scholar 

  34. P. Massey, J. A. Clark, and S. A. Stepney, “Human-Competitive Evolution of Quantum Computing Artefacts by Genetic Programming,” Evolutionary Computation, Volume 14, Issue 1 (2006) pp. 21–40.

    Article  Google Scholar 

  35. M. Möttönen, J. Vartiainen, V. Bergholm, and M. Salomaa, “Quantum Circuits for General Multiqubit Gates,” Phys. Rev. Lett., Volume 93 (2004) 130502.

    Article  Google Scholar 

  36. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental Realization of any Discrete Unitary Operator,” Phys. Rev. Lett., Volume 73, Issue 1 (1994) pp. 58–61.

    Article  Google Scholar 

  37. V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of Quantum Logic Circuits,” IEEE Trans. on Computer-Aided Design, Volume 25, Issue 6 (2006) pp. 1000–1010.

    Article  Google Scholar 

  38. P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” in Proc. of the 35th Annual Symposium on Foundations of Computer Science, ed. S. Goldwasser, IEEE Computer Society, New York (1994) pp. 124–134.

    Chapter  Google Scholar 

  39. P. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Journal on Computing, Volume 26, Issue 5 (1997) pp. 1484–1509.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Solenov and L. Fedichkin, “Nonunitary Quantum Walks on Hyper-Cycles,” Phys. Rev. A, Volume 73 (2006) 012308.

    Article  MathSciNet  Google Scholar 

  41. L. Spector and H. J. Bernstein, “Communication Capacities of Some Quantum Gates, Discovered in Part through Genetic Programming,” in Proceedings of the Sixth International Conference on Quantum Communication, Measurement, and Computing (QCMC), eds. J. H. Shapiro and O. Hirota, Rinton Press, Princeton (2003) pp. 500–503.

    Google Scholar 

  42. L. Spector and J. Klein, “Machine Invention of Quantum Computing Circuits by Means of Genetic Programming,” AI-EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Volume 22, Issue 3 (2008) pp. 275–283.

    Google Scholar 

  43. L. Spector, H. Barnum, and H. J. Bernstein, “Genetic Programming for Quantum Computers,” in Genetic Programming 1998: Proceedings of the Third Annual Conference, eds. J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, Morgan Kaufmann, San Francisco (1998) pp. 365–374.

    Google Scholar 

  44. L. Spector, H. Barnum, and H. J. Bernstein, “Quantum Computing Applications of Genetic Programming,” in Advances in Genetic Programming, Volume 3, eds. L. Spector, U. O’Reilly, W. Langdon, and P. Angeline, MIT Press, Cambridge (1999) pp. 135–160.

    Google Scholar 

  45. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a Better-than-Classical Quantum AND/OR Algorithm using Genetic Programming,” in Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, NJ, IEEE Press, New York (1999) pp. 2239–2246.

    Google Scholar 

  46. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, Quantum Computing Applications of Genetic Programming, Complex Adaptive Systems Series, Advances in Genetic Programming, Volume 3, MIT Press, Cambridge (1999) pp. 135–160.

    Google Scholar 

  47. S. Stepney and J. A. Clark, “Searching for Quantum Programs and Quantum Protocols: a Review,” J. Comput. Theor. Nanosci., Volume 5 (2008) pp. 942–969.

    Google Scholar 

  48. H. Terashima and M. Ueda, “Nonunitary quantum circuit,” Int. J. Quantum Inform. Volume 3 (2005) pp. 633–647.

    Article  MATH  Google Scholar 

  49. R. R. Tucci, “A Rudimentary Quantum Compiler, Second Edition,” arXiv:quant-ph/9902062v1 (1999).

  50. R. R. Tucci, “Qubiter Algorithm Modification, Expressing Unstructured Unitary Matrices with Fewer CNOTs,” arXiv:quant-ph/0411027v1 (2004).

  51. J. Vartiainen, M. Möttönen, and M. Salomaa, “Efficient Decomposition of Quantum Gates,” Phys. Rev. Lett., Volume 92 (2004) 177902.

    Article  Google Scholar 

  52. C. P. Williams, “Probabilistic Non-unitary Quantum Computing,” in Quantum Information and Computation II, eds. E. Donkor, A. R. Pirich, and H. E. Brandt, SPIE Proceedings, Volume 5436 (2004) pp. 297–306.

    Google Scholar 

  53. C. P. Williams and A. Gray, Automated Design of Quantum Circuits,” in First NASA International Conference on Quantum Computing and Quantum Communications, Palm Springs, California, USA, February 17th–20th 1998, Lecture Notes in Computer Science, Volume 1509, Springer, Berlin (1999) pp. 113–125.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. Williams .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Williams, C.P. (2011). Quantum Circuits. In: Explorations in Quantum Computing. Texts in Computer Science. Springer, London. https://doi.org/10.1007/978-1-84628-887-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-887-6_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-886-9

  • Online ISBN: 978-1-84628-887-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics