Skip to main content

Organ Perfusion in Acute Heart Failure Syndromes

  • Chapter
Acute Heart Failure

Abstract

Acute heart failure syndromes (AHFSs) are associated with some degree of perfusion abnormality that is not necessarily evident. Cardiogenic shock is among the most important manifestations of the AHFS and is defined by clinically obvious or measured inadequate end-organ perfusion and tissue hypoxia with mortality in the range of 50%1. Causes of death are not only cardiogenic shock but also various organ failures despite normalized cardiac index2. Renal dysfunction, for example, is the most frequent and apparent organ dysfunction and is a powerful adverse prognostic factor (reviewed in Gheorghiade et al.3). Low organ perfusion during AHFS (Fig. 15.1) may result from a “forward” failure (acute coronary syndrome, myocardial failure with cardiogenic shock of various etiologies), from a “backward” failure with congestion due to global or right heart failure, or from a maladapted peripheral vasoconstriction (hypertensive acute heart failure). Regional redistribution of blood flow toward various vascular beds in the setting of AHFS has been seldom addressed over the last three decades compared to other acute states such as sepsis or hemorrhage, and consequently this chapter focuses on low-output AHFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 2005;294:448–54.

    Article  CAS  PubMed  Google Scholar 

  2. Lim N, Dubois MJ, De Backer D, Vincent JL. Do all nonsurvivors of cardiogenic shock die with a low cardiac index? Chest 2003;124:1885–91.

    Article  PubMed  Google Scholar 

  3. Gheorghiade M, De Luca L, Fonarow GC, Filippatos G, Metra M, Francis GS. Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 2005;96:11G–17G.

    Article  PubMed  Google Scholar 

  4. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med 1999;341:577–85.

    Article  CAS  PubMed  Google Scholar 

  5. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock [see comments]. Circulation 1997;95:1122–5.

    CAS  PubMed  Google Scholar 

  6. Sivarajan M, Amory DW. Effects of glucagon on regional blood flow during cardiogenic shock. Circ Shock 1979;6:365–73.

    CAS  PubMed  Google Scholar 

  7. Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 1983;72:935–47.

    Article  CAS  PubMed  Google Scholar 

  8. Zelis R, Nellis SH, Longhurst J, Lee G, Mason DT. Abnormalities in the regional circulations accompanying congestive heart failure. Prog Cardiovasc Dis 1975;18:181–99.

    Article  CAS  PubMed  Google Scholar 

  9. Gunnes P, Reikeras O. Peripheral distribution of the increased cardiac output by secretin during acute ischemic left ventricular failure. J Pharmacol Exp Ther 1988;244:1057–61.

    CAS  PubMed  Google Scholar 

  10. Zelis R, Capone R, Mansour E, Field JM. The effects of short-term venous congestion on forearm venous volume and reactive hyperemia blood flow in human subjects. Circulation 1978;57:1001–3.

    CAS  PubMed  Google Scholar 

  11. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med 2000;28:1290–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kiuchi K, Sato N, Shannon RP, Vatner DE, Morgan K, Vatner SF. Depressed beta-adrenergic receptor-and endothelium-mediated vasodilation in conscious dogs with heart failure. Circ Res 1993;73:1013–23.

    CAS  PubMed  Google Scholar 

  13. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 2004;147:91–9.

    Article  PubMed  Google Scholar 

  14. Tousoulis D, Antoniades C, Katsi V, et al. The impact of early administration of low-dose atorvastatin treatment on inflammatory process, in patients with unstable angina and low cholesterol level. Int J Cardiol 2005.

    Google Scholar 

  15. Maximov MJ, Brody MJ. Changes in regional vascular resistance after myocardial infarction in the dog. Am J Cardiol 1976;37:26–32.

    Article  CAS  PubMed  Google Scholar 

  16. Zelis R, Flaim SF. Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis 1982;24:437–59.

    Article  CAS  PubMed  Google Scholar 

  17. Oliver JA, Sciacca RR, Pinto J, Cannon PJ. Participation of the prostaglandins in the control of renal blood flow during acute reduction of cardiac output in the dog. J Clin Invest 1981;67:229–37.

    Article  CAS  PubMed  Google Scholar 

  18. Redfield MM, Edwards BS, Heublein DM, Burnett JC Jr: Restoration of renal response to atrial natriuretic factor in experimental low-output heart failure. Am J Physiol 1989;257:R917–23.

    CAS  PubMed  Google Scholar 

  19. Lee RW, Raya TE, Michael U, Foster S, Meeks T, Goldman S. Captopril and ANP. changes in renal hemodynamics, glomerular-ANP receptors and guanylate cyclase activity in rats with heart failure. J Pharmacol Exp Ther 1992;260:349–54.

    CAS  PubMed  Google Scholar 

  20. Qing G, Garcia R. Characterisation of plasma and tissue atrial natriuretic factor during development of moderate high output heart failure in the rat. Cardiovasc Res 1993;27:464–70.

    Article  CAS  PubMed  Google Scholar 

  21. Smiseth OA, Riemersma RA, Steinnes K, Mjos OD. Regional blood flow during acute heart failure in dogs. Role of adipose tissue perfusion in regulating plasma-free fatty acids. Scand J Clin Lab Invest 1983;43:285–92.

    Article  CAS  PubMed  Google Scholar 

  22. Arnolda L, McGrath BP, Johnston CI. Systemic and regional effects of vasopressin and angiotensin in acute left ventricular failure. Am J Physiol 1991;260:H499–506.

    CAS  PubMed  Google Scholar 

  23. Higgins CB, Vatner SF, Franklin D, Braunwald E. Pattern of differential vasoconstriction in response to acute and chronic low-output states in the conscious dog. Cardiovasc Res 1974;8:92–8.

    Article  CAS  PubMed  Google Scholar 

  24. Cody RJ, Ljungman S, Covit AB, et al. Regulation of glomerular filtration rate in chronic congestive heart failure patients. Kidney Int 1988;34:361–7.

    Article  CAS  PubMed  Google Scholar 

  25. Annane D, Bellissant E, Pussard E, et al. Placebo-controlled, randomized, double-blind study of intravenous enalaprilat efficacy and safety in acute cardiogenic pulmonary edema. Circulation 1996;94:1316–24.

    CAS  PubMed  Google Scholar 

  26. Freis ED. Studies in hemodynamics and hypertension. Hypertension 2001;38:1–5.

    CAS  PubMed  Google Scholar 

  27. Rose JC, Freis ED. Alterations in systemic vascular volume of the dog in response to hexamethonium and norepinephrine. Am J Physiol 1957;191:283–6.

    CAS  PubMed  Google Scholar 

  28. Aubier M, Trippenbach T, Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol 1981;51:499–508.

    CAS  PubMed  Google Scholar 

  29. Aubier M. Alteration in diaphragmatic function during cardiac insufficiency: potential pharmacology modulation. J Mol Cell Cardiol 1996;28:2293–302.

    Article  CAS  PubMed  Google Scholar 

  30. Fahey JT, Lister G, Sanfilippo DJ 2nd, Edelstone DI. Hepatic and gastrointestinal oxygen and lactate metabolism during low cardiac output in lambs. Pediatr Res 1997;41:842–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hirsch LJ, Glick G. Mesenteric circulation in cardiogenic shock with and without alpha-receptor blockade. Am J Physiol 1973;225:356–9.

    CAS  PubMed  Google Scholar 

  32. Burgener D, Laesser M, Treggiari-Venzi M, et al. Endothelin-1 blockade corrects mesenteric hypo-perfusion in a porcine low cardiac output model. Crit Care Med 2001;29:1615–20.

    Article  CAS  PubMed  Google Scholar 

  33. Bulkley GB, Oshima A, Bailey RW. Pathophysiology of hepatic ischemia in cardiogenic shock. Am J Surg 1986;151:87–97.

    Article  CAS  PubMed  Google Scholar 

  34. Reilly PM, MacGowan S, Miyachi M, Schiller HJ, Vickers S, Bulkley GB. Mesenteric vasoconstriction in cardiogenic shock in pigs. Gastroenterology 1992;102:1968–79.

    CAS  PubMed  Google Scholar 

  35. Bulkley GB, Oshima A, Bailey RW, Horn SD. Control of gastric vascular resistance in cardiogenic shock. Surgery 1985;98:213–23.

    CAS  PubMed  Google Scholar 

  36. Rutlen DL, Welt FG, Ilebekk A. Passive effect of reduced cardiac function on splanchnic intravascular volume. Am J Physiol 1992;262:H1361–4.

    CAS  PubMed  Google Scholar 

  37. Risoe C, Hall C, Smiseth OA. Effect of enalaprilat on splanchnic vascular capacitance during acute ischemic heart failure in dogs. Am J Physiol 1994;266:H2182–9.

    CAS  PubMed  Google Scholar 

  38. Gatecel C, Mebazaa A, Kong R, et al. Inhaled nitric oxide improves hepatic tissue oxygenation in right ventricular failure: value of hepatic venous oxygen saturation monitoring. Anesthesiology 1995;82:588–90.

    Article  CAS  PubMed  Google Scholar 

  39. Gruhn N, Larsen FS, Boesgaard S, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001;32:2530–3.

    Article  CAS  PubMed  Google Scholar 

  40. Alves TC, Rays J, Fraguas R Jr, et al. Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT. J Neuroimaging 2005;15:150–6.

    PubMed  Google Scholar 

  41. Madsen PL, Nielsen HB, Christiansen P. Wellbeing and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol 2000;20:158–64.

    Article  CAS  PubMed  Google Scholar 

  42. Drexler H. Skeletal muscle failure in heart failure. Circulation 1992;85:1621–3.

    CAS  PubMed  Google Scholar 

  43. Drexler H, Lu W. Endothelial dysfunction of hindquarter resistance vessels in experimental heart failure. Am J Physiol 1992;262:H1640–5.

    CAS  PubMed  Google Scholar 

  44. Mancini DM, Wilson JR, Bolinger L, et al. In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation 1994;90:500–8.

    CAS  PubMed  Google Scholar 

  45. Schiotz Thorud HM, Lunde PK, Nicolaysen G, et al. Muscle dysfunction during exercise of a single skeletal muscle in rats with congestive heart failure is not associated with reduced muscle blood supply. Acta Physiol Scand 2004;181:173–81.

    Article  PubMed  Google Scholar 

  46. Karlsson J, Willerson JT, Leshin SJ, Mullins CB, Mitchell JH. Skeletal muscle metabolites in pat-ients with cardiogenic shock or severe congestive heart failure. Scand J Clin Lab Invest 1975;35:73–9.

    CAS  PubMed  Google Scholar 

  47. Fonarow GC. The treatment targets in acute decompensated heart failure. Rev Cardiovasc Med 2001;2(suppl 2):S7–S12.

    PubMed  Google Scholar 

  48. Payen DM, Farge D, Beloucif S, et al. No involvement of antidiuretic hormone in acute antidiuresis during PEEP ventilation in humans. Anesthesiology 1987;66:17–23.

    Article  CAS  PubMed  Google Scholar 

  49. Payen DM, Brun-Buisson CJ, Carli PA, et al. Hemodynamic, gas exchange, and hormonal consequences of LBPP during PEEP ventilation. J Appl Physiol 1987;62:61–70.

    CAS  PubMed  Google Scholar 

  50. Shah MR, O’Connor CM, Sopko G, Hasselblad V, Califf RM, Stevenson LW. Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE): design and rationale. Am Heart J 2001;141:528–35.

    Article  CAS  PubMed  Google Scholar 

  51. Cuffe MS, Califf RM, Adams KF Jr, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 2002;287:1541–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hall C, Morkrid L, Kjekshus J. Effect of ACE-inhibition on tissue blood flow during acute left ventricular failure in the dog. Res Exp Med (Berl) 1987;187:59–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kopel, T.H., Losser, MR. (2008). Organ Perfusion in Acute Heart Failure Syndromes. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics