Skip to main content

Models of Human Renal Cell Carcinoma

  • Chapter
Renal Cell Cancer
  • 1016 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 2004;40:852–857.

    Article  PubMed  CAS  Google Scholar 

  2. Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 2005;11:971–981.

    PubMed  CAS  Google Scholar 

  3. Hawk ET, Umar A, Lubet RA, Kopelovich L, Viner JL. Can animal models help us select specific compounds for cancer prevention trials? Recent Results Cancer Res 2005;166:71–87.

    Article  PubMed  CAS  Google Scholar 

  4. Hillman GG, Droz JP, Haas GP. Experimental animal models for the study of therapeutic approaches in renal cell carcinoma. In Vivo 1994;8:77–80.

    PubMed  CAS  Google Scholar 

  5. Hawkins P. Recognizing and assessing pain, suffering and distress in laboratory animals: a survey of current practice in the UK with recommendations. Lab Anim 2002;36:378–395.

    Article  PubMed  CAS  Google Scholar 

  6. Knoll K, Wrasidlo W, Scherberich JE, Gaedicke G, Fischer P. Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin thetaI1. Cancer Res 2000;60:6089–6094.

    PubMed  CAS  Google Scholar 

  7. Chagnon F, Tanguay S, Ozdal OL, Guan M, Ozen ZZ, Ripeau JS, Chevrette M, Elhilali MM, Thompson-Snipes LA. Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin Cancer Res 2005;11:1302–1311.

    PubMed  CAS  Google Scholar 

  8. Kausch I, Jiang H, Brocks C, Bruderek K, Kruger S, Sczakiel G, Jocham D, Bohle A. Ki-67-directed antisense therapy in an orthotopic renal cell carcinoma model. Eur Urol 2004;46:118–124; discussion 24–25.

    Article  PubMed  CAS  Google Scholar 

  9. Kausch I, Jiang H, Ewerdwalbesloh N, Doehn C, Kruger S, Sczakiel G, Jocham D. Inhibition of Ki-67 in a renal cell carcinoma severe combined immunodeficiency disease mouse model is associated with induction of apoptosis and tumour growth inhibition. BJU Int 2005;95:416–420.

    Article  PubMed  CAS  Google Scholar 

  10. Keyes K, Cox K, Treadway P, Mann L, Shih C, Faul MM, Teicher BA. An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 2002;62:5597–5602.

    PubMed  CAS  Google Scholar 

  11. Weiss JM, Shivakumar R, Feller S, Li LH, Hanson A, Fogler WE, Fratantoni JC, Liu LN. Rapid, in vivo, evaluation of antiangiogenic and antineoplastic gene products by nonviral transfection of tumor cells. Cancer Gene Ther 2004;11:346–353.

    Article  PubMed  CAS  Google Scholar 

  12. Douglas ML, Reid JL, Hii SI, Jonsson JR, Nicol DL. Renal cell carcinoma may adapt to and overcome anti-angiogenic intervention with thalidomide. BJU Int 2002;89:591–595.

    Article  PubMed  CAS  Google Scholar 

  13. O’Brien SJ. Cell culture forensics. Proc Natl Acad Sci USA 2001;98:7656–7658.

    Article  PubMed  CAS  Google Scholar 

  14. Kim IY, Lee DH, Lee DK, Kim BC, Kim HT, Leach FS, Linehan WM, Morton RA, Kim SJ. Decreased expression of bone morphogenetic protein (BMP) receptor type II correlates with insensitivity to BMP-6 in human renal cell carcinoma cells. Clin Cancer Res 2003;9:6046–6051.

    PubMed  CAS  Google Scholar 

  15. Miyao N, Tsukamoto T, Kumamoto Y. Establishment of three human renal cell carcinoma cell lines (SMKT-R-1, SMKT-R-2, and SMKT-R-3) and their characters. Urol Res 1989;17:317–324.

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi M, Yang XJ, Sugimura J, Backdahl J, Tretiakova M, Qian CN, Gray SG, Knapp R, Anema J, Kahnoski R, Nicol D, Vogelzang NJ, et al. Molecular subclassification of kidney tumors and the discovery of new diagnostic markers. Oncogene 2003;22:6810–6818.

    Article  PubMed  CAS  Google Scholar 

  17. Weber KL, Pathak S, Multani AS, Price JE. Characterization of a renal cell carcinoma cell line derived from a human bone metastasis and establishment of an experimental nude mouse model. J Urol 2002;168:774–779.

    Article  PubMed  Google Scholar 

  18. Okimoto K, Kouchi M, Matsumoto I, Sakurai J, Kobayashi T, Hino O. Natural history of the Nihon rat model of BHD. Curr Mol Med 2004;4:887–893.

    Article  PubMed  CAS  Google Scholar 

  19. Sier CF, Gelderman KA, Prins FA, Gorter A. Beta-glucan enhanced killing of renal cell carcinoma micrometastases by monoclonal antibody G250 directed complement activation. Int J Cancer 2004;109:900–908.

    Article  PubMed  CAS  Google Scholar 

  20. Mayer B, Klement G, Kaneko M, Man S, Jothy S, Rak J, Kerbel RS. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology 2001;121:839–852.

    Article  PubMed  CAS  Google Scholar 

  21. Song H, Jain SK, Enmon RM, O’Connor KC. Restructuring dynamics of DU 145 and LNCaP prostate cancer spheroids. In Vitro Cell Dev Biol Anim 2004;40:262–267.

    Article  PubMed  Google Scholar 

  22. Walenta S, Doetsch J, Mueller-Klieser W, Kunz-Schughart LA. Metabolic imaging in multicellular spheroids of oncogene-transfected fibroblasts. J Histochem Cytochem 2000;48:509–522.

    PubMed  CAS  Google Scholar 

  23. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 2004;10:1032–1042.

    Article  PubMed  CAS  Google Scholar 

  24. Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004;40:827–836.

    Article  PubMed  CAS  Google Scholar 

  25. Khan KN, Stanfield KM, Trajkovic D, Knapp DW. Expression of cyclooxygenase-2 in canine renal cell carcinoma. Vet Pathol 2001;38:116–119.

    Article  PubMed  CAS  Google Scholar 

  26. Lucke VM, Kelly DF. Renal carcinoma in the dog. Vet Pathol 1976;13:264–276.

    PubMed  CAS  Google Scholar 

  27. Rabstein LS, Peters RL. Tumors of the kidneys, synovia, exocrine pancreas and nasal cavity in BALB-cf-Cd mice. J Natl Cancer Inst 1973;51:999–1006.

    PubMed  CAS  Google Scholar 

  28. Hard GC. Pathology of tumours in laboratory animals. Tumours of the rat. Tumours of the kidney, renal pelvis and ureter. IARC Sci Publ 1990;(99):301–344.

    PubMed  Google Scholar 

  29. Douglas ML, Richardson MM, Nicol DL. Endothelin axis expression is markedly different in the two main subtypes of renal cell carcinoma. Cancer 2004;100:2118–2124.

    Article  PubMed  CAS  Google Scholar 

  30. Haase VH. The VHL tumor suppressor in development and disease: Functional studies in mice by conditional gene targeting. Semin Cell Dev Biol 2005;16(4–5):564–574.

    Article  PubMed  CAS  Google Scholar 

  31. Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD, Linehan WM. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 1997;94:9102–9107.

    Article  PubMed  CAS  Google Scholar 

  32. Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL. Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in Vhl knockout mice. Carcinogenesis 2004;25:309–315.

    Article  PubMed  CAS  Google Scholar 

  33. Liu MY, Poellinger L, Walker CL. Up-regulation of hypoxia-inducible factor 2alpha in renal cell carcinoma associated with loss of Tsc-2 tumor suppressor gene. Cancer Res 2003;63:2675–2680.

    PubMed  CAS  Google Scholar 

  34. Rathmell WK, Hickey MM, Bezman NA, Chmielecki CA, Carraway NC, Simon MC. In vitro and in vivo models analyzing von Hippel-Lindau disease-specific mutations. Cancer Res 2004;64:8595–8603.

    Article  PubMed  CAS  Google Scholar 

  35. Henske EP. The genetic basis of kidney cancer: why is tuberous sclerosis complex often overlooked? Curr Mol Med 2004;4:825–831.

    Article  PubMed  CAS  Google Scholar 

  36. Cook JD, Walker CL. The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med 2004;4:813–824.

    Article  PubMed  CAS  Google Scholar 

  37. Eker R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand 1954;34:554–562.

    PubMed  CAS  Google Scholar 

  38. Kleymenova E, Walker CL. Determination of loss of heterozygosity in frozen and paraffin embedded tumors by denaturating high-performance liquid chromatography (DHPLC). J Biochem Biophys Methods 2001;47:83–90.

    Article  PubMed  CAS  Google Scholar 

  39. Eker R, Mossige J, Johannessen JV, Aars H. Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol 1981;4:99–110.

    PubMed  CAS  Google Scholar 

  40. McDorman KS, Wolf DC. Use of the spontaneous Tsc2 knockout (Eker) rat model of hereditary renal cell carcinoma for the study of renal carcinogens. Toxicol Pathol 2002;30:675–680.

    Article  PubMed  CAS  Google Scholar 

  41. Mancuso A, Sternberg CN. What’s new in the treatment of metastatic kidney cancer? BJU Int 2005;95:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  42. Staehler M, Rohrmann K, Bachmann A, Zaak D, Stief CG, Siebels M. Therapeutic approaches in metastatic renal cell carcinoma. BJU Int 2005;95:1153–1161.

    Article  PubMed  Google Scholar 

  43. Maher SG, Condron CE, Bouchier-Hayes DJ, Toomey DM. Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clin Exp Immunol 2005;139:279–286.

    Article  PubMed  CAS  Google Scholar 

  44. Avigan D. Dendritic cell-tumor fusion vaccines for renal cell carcinoma. Clin Cancer Res 2004;10:6347S–6352S.

    Article  PubMed  CAS  Google Scholar 

  45. Bukur J, Malenica B, Huber C, Seliger B. Altered expression of nonclassical HLA class Ib antigens in human renal cell carcinoma and its association with impaired immune response. Hum Immunol 2003;64:1081–1092.

    Article  PubMed  CAS  Google Scholar 

  46. Patel SK, Ma N, Monks TJ, Lau SS. Changes in gene expression during chemical-induced nephrocarcinogenicity in the Eker rat. Mol Carcinog 2003;38:141–154.

    Article  PubMed  CAS  Google Scholar 

  47. Hao X, Sun B, Hu L, Lahdesmaki H, Dunmire V, Feng Y, Zhang SW, Wang H, Wu C, Fuller GN, Symmans WF, Shmulevich I, et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004;100:1110–1122.

    Article  PubMed  CAS  Google Scholar 

  48. Reinholz MM, Iturria SJ, Ingle JN, Roche PC. Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 2002;74:255–269.

    Article  PubMed  CAS  Google Scholar 

  49. Yanagawa R, Furukawa Y, Tsunoda T, Kitahara O, Kameyama M, Murata K, Ishikawa O, Nakamura Y. Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasia 2001;3:395–401.

    Article  PubMed  CAS  Google Scholar 

  50. Yamazaki S, Morita T, Endo H, Hamamoto T, Baba M, Joichi Y, Kaneko S, Okada Y, Okuyama T, Nishino H, Tokue A. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett 2002;183:23–30.

    Article  PubMed  CAS  Google Scholar 

  51. Yoshimura I, Mizuguchi Y, Miyajima A, Asano T, Tadakuma T, Hayakawa M. Suppression of lung metastasis of renal cell carcinoma by the intramuscular gene transfer of a soluble form of vascular endothelial growth factor receptor I. J Urol 2004;171:2467–2470.

    Article  PubMed  CAS  Google Scholar 

  52. Basse P, Hokland P, Heron I, Hokland M. Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells. J Natl Cancer Inst 1988;80:657–665.

    Article  PubMed  CAS  Google Scholar 

  53. Arguello F, Baggs RB, Eskenazi AE, Duerst RE, Frantz CN. Vascular anatomy and organ-specific tumor growth as critical factors in the development of metastases and their distribution among organs. Int J Cancer 1991;48:583–590.

    Article  PubMed  CAS  Google Scholar 

  54. Price JE, Barth RF, Johnson CW, Staubus AE. Injection of cells and monoclonal antibodies into mice: comparison of tail vein and retroorbital routes. Proc Soc Exp Biol Med 1984;177:347–353.

    PubMed  CAS  Google Scholar 

  55. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res 1988;48:6876–6881.

    PubMed  CAS  Google Scholar 

  56. Funahashi Y, Wakabayashi T, Semba T, Sonoda J, Kitoh K, Yoshimatsu K. Establishment of a quantitative mouse dorsal air sac model and its application to evaluate a new angiogenesis inhibitor. Oncol Res 1999;11:319–329.

    PubMed  CAS  Google Scholar 

  57. Sasamura H, Takahashi A, Yuan J, Kitamura H, Masumori N, Miyao N, Itoh N, Tsukamoto T. Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology 2004;64:389–393.

    Article  PubMed  Google Scholar 

  58. Keyes KA, Mann L, Sherman M, Galbreath E, Schirtzinger L, Ballard D, Chen YF, Iversen P, Teicher BA. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 2004;53:133–140.

    Article  PubMed  CAS  Google Scholar 

  59. Ebert T, Bander NH, Finstad CL, Ramsawak RD, Old LJ. Establishment and characterization of human renal cancer and normal kidney cell lines. Cancer Res 1990;50:5531–5536.

    PubMed  CAS  Google Scholar 

  60. Anglard P, Trahan E, Liu S, Latif F, Merino MJ, Lerman MI, Zbar B, Linehan WM. Molecular and cellular characterization of human renal cell carcinoma cell lines. Cancer Res 1992;52:348–356.

    PubMed  CAS  Google Scholar 

  61. van den Hurk WH, Martens GJ, Geurts van Kessel A, van Groningen JJ. Isolation and characterization of the Xenopus laevis orthologs of the human papillary renal cell carcinoma-associated genes PRCC and MAD2L2 (MAD2B). Cytogenet Genome Res 2004;106:68–73.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Douglas, M.L., Nicol, D.L. (2008). Models of Human Renal Cell Carcinoma. In: Rosette, J.J.d., Sternberg, C.N., Poppel, H.P.v. (eds) Renal Cell Cancer. Springer, London. https://doi.org/10.1007/978-1-84628-763-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-763-3_56

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-385-7

  • Online ISBN: 978-1-84628-763-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics