Skip to main content

Cardiac Hypertrophy

  • Chapter
Cardiovascular Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tam SK, Gu W, Mahdavi V, et al. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann NY Acad Sci 1995;752:72–79.

    Article  PubMed  CAS  Google Scholar 

  2. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.

    Article  PubMed  CAS  Google Scholar 

  3. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci 2003;100:12313–12318.

    Article  PubMed  CAS  Google Scholar 

  4. Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647–653.

    Article  PubMed  CAS  Google Scholar 

  5. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989;2:358–367.

    PubMed  CAS  Google Scholar 

  6. Lauer MS, Larson MG, Levy D. Gender-specific reference Mmode values in adults: population-derived values with consideration of the impact of height. J Am Coll Cardiol 1995;26:1039–1046.

    Article  PubMed  CAS  Google Scholar 

  7. Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006;47:1777–1785.

    Article  PubMed  Google Scholar 

  8. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz 2002;27:92–98.

    Article  PubMed  Google Scholar 

  9. White HD, Norris RM, Brown MA, et al. Left ventricular endsystolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44–51.

    PubMed  CAS  Google Scholar 

  10. St John SM, Pfeffer MA, Plappert T, et al. Quantitative twodimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 1994;89:68–75.

    Google Scholar 

  11. Meerson FZ, Kalebina NS, Malov GA, et al. Effect of actinomycin D on the development of the compensatory hyperfunction of the myocardium, kidney and liver. Acta Biol Acad Sci Hung 1965;15:375–382.

    PubMed  CAS  Google Scholar 

  12. Marian AJ. Clinical and molecular genetic aspects of hypertrophic cardiomyopathy. Curr Cardiol Rev 2005;1:53–63.

    Article  CAS  Google Scholar 

  13. Verhaaren HA, Schieken RM, Mosteller M, et al. Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). Am J Cardiol 1991;68:661–668.

    Article  PubMed  CAS  Google Scholar 

  14. Garner C, Lecomte E, Visvikis S, et al. Genetic and environmental influences on left ventricular mass: a family study. Hypertension 2000;36:740–746.

    PubMed  CAS  Google Scholar 

  15. Bella JN, MacCluer JW, Roman MJ, et al. Heritability of left ventricular dimensions and mass in American Indians: the Strong Heart Study. J Hypertens 2004;22:281–286.

    Article  PubMed  CAS  Google Scholar 

  16. Sharma P, Middelberg RP, Andrew T, et al. Heritability of left ventricular mass in a large cohort of twins. J Hypertens 2006;24:321–324.

    Article  PubMed  CAS  Google Scholar 

  17. Lechin M, Quinones MA, Omran A, et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 1995;92:1808–1812.

    PubMed  CAS  Google Scholar 

  18. Diet F, Graf C, Mahnke N, et al. ACE and angiotensinogen gene genotypes and left ventricular mass in athletes. Eur J Clin Invest 2001;31:836–842.

    Article  PubMed  CAS  Google Scholar 

  19. Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study: Coronary Artery Risk Development in (Young) Adults. Circulation 1995;92:785–789.

    PubMed  CAS  Google Scholar 

  20. Nagueh SF, Bachinski L, Meyer D, et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with familial hypertrophic cardiomyopathy and provides a novel means for an early diagnosis prior to an independent of hypertrophy. Circulation 2001;104:128–130.

    PubMed  CAS  Google Scholar 

  21. Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology 2004;44:412–427.

    Article  PubMed  CAS  Google Scholar 

  22. Shirani J, Pick R, Roberts WC, et al. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 2000;35:36–44.

    Article  PubMed  CAS  Google Scholar 

  23. Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000;342:1778–1785.

    Article  PubMed  CAS  Google Scholar 

  24. Varnava AM, Elliott PM, Mahon N, et al. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 2001;88:275–279.

    Article  PubMed  CAS  Google Scholar 

  25. Kofflard MJM, ten Cate FJ, van der Lee C, et al. Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol 2003;41:987–993.

    Article  PubMed  Google Scholar 

  26. Nienaber CA, Hiller S, Spielmann RP, et al. Syncope in hypertrophic cardiomyopathy: multivariate analysis of prognostic determinants. J Am Coll Cardiol 1990;15:948–955.

    Article  PubMed  CAS  Google Scholar 

  27. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 2000;36:2212–2218.

    Article  PubMed  CAS  Google Scholar 

  28. Cannan CR, Reeder GS, Bailey KR, et al. Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation 1995;92:2488–2495.

    PubMed  CAS  Google Scholar 

  29. Maron BJ, Shirani J, Poliac LC, et al. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996;276:199–204.

    Article  PubMed  CAS  Google Scholar 

  30. Erdmann J, Raible J, Maki-Abadi J, et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol 2001;38:322–330.

    Article  PubMed  CAS  Google Scholar 

  31. Mann DL, Kent RL, Cooper G. Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res 1989;64:1079–1090.

    PubMed  CAS  Google Scholar 

  32. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1-and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res 1985;56:884–894.

    PubMed  CAS  Google Scholar 

  33. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.

    PubMed  CAS  Google Scholar 

  34. Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    Article  PubMed  CAS  Google Scholar 

  35. Akhter SA, Luttrell LM, Rockman HA, et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280:574–577.

    Article  PubMed  CAS  Google Scholar 

  36. Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998;95:10140–10145.

    Article  PubMed  CAS  Google Scholar 

  37. Mende U, Kagen A, Cohen A, et al. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 1998;95:13893–13898.

    Article  PubMed  CAS  Google Scholar 

  38. Johnatty SE, Dyck JR, Michael LH, et al. Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J Mol Cell Cardiol 2000;32:805–815.

    Article  PubMed  CAS  Google Scholar 

  39. Kai H, Muraishi A, Sugiu Y, et al. Expression of protooncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ Res 1998;83:594–601.

    PubMed  CAS  Google Scholar 

  40. Li RK, Li G, Mickle DA, et al. Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997;96:874–881.

    PubMed  CAS  Google Scholar 

  41. Derchi G, Bellone P, Chiarella F, et al. Plasma levels of atrial natriuretic peptide in hypertrophic cardiomyopathy. Am J Cardiol 1992;70:1502–1504.

    Article  PubMed  CAS  Google Scholar 

  42. Hasegawa K, Fujiwara H, Doyama K, et al. Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circulation 1993;88:372–380.

    PubMed  CAS  Google Scholar 

  43. Marian AJ, Nambi V. Biomarkers of cardiac disease. Expert Rev Mol Diagn 2004;4:805–820.

    Article  PubMed  CAS  Google Scholar 

  44. Matsui H, MacLennan DH, Alpert NR, et al. Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 1995;268:C252–C258.

    PubMed  CAS  Google Scholar 

  45. Haghighi K, Gregory KN, Kranias EG. Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem Biophys Res Commun 2004;322:1214–1222.

    Article  PubMed  CAS  Google Scholar 

  46. Barry WH, Bridge JH. Intracellular calcium homeostasis in cardiac myocytes. Circulation 1993;87:1806–1815.

    PubMed  CAS  Google Scholar 

  47. Arai M, Alpert NR, MacLennan DH, et al. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993;72:463–469.

    PubMed  CAS  Google Scholar 

  48. Studer R, Reinecke H, Bilger J, et al. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 1994;75:443–453.

    PubMed  CAS  Google Scholar 

  49. Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997;100:2315–2324.

    Article  PubMed  CAS  Google Scholar 

  50. Hwang JJ, Allen PD, Tseng GC, et al. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic endstage heart failure. Physiol Genomics 2002;10:31–44.

    PubMed  CAS  Google Scholar 

  51. Lompre AM, Schwartz K, d’Albis A, et al. Myosin isoenzyme redistribution in chronic heart overload. Nature 1979;282:105–107.

    Article  PubMed  CAS  Google Scholar 

  52. Mercadier JJ, Lompre AM, Wisnewsky C, et al. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res 1981;49:525–532.

    PubMed  CAS  Google Scholar 

  53. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986;66:710–771.

    PubMed  CAS  Google Scholar 

  54. Anderson PA, Greig A, Mark TM, et al. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 1995;76:681–686.

    PubMed  CAS  Google Scholar 

  55. Palmiter KA, Tyska MJ, Dupuis DE, et al. Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol (Lond) 1999;519:669–678.

    Article  PubMed  CAS  Google Scholar 

  56. Holubarsch C, Goulette RP, Litten RZ, et al. The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 1985;56:78–86.

    PubMed  CAS  Google Scholar 

  57. Sugiura S, Kobayakawa N, Fujita H, et al. Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation. Circ Res 1998;82:1029–1034.

    PubMed  CAS  Google Scholar 

  58. Hamawaki M, Coffman TM, Lashus A, et al. Pressure-overload hypertrophy is unabated in mice devoid of AT1A receptors. Am J Physiol 1998;274:H868–H873.

    PubMed  CAS  Google Scholar 

  59. Kudoh S, Komuro I, Hiroi Y, et al. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 1998;273:24037–24043.

    Article  PubMed  CAS  Google Scholar 

  60. Nuss HB, Houser SR. Voltage dependence of contraction and calcium current in severely hypertrophied feline ventricular myocytes. J Mol Cell Cardiol 1991;23:717–726.

    Article  PubMed  CAS  Google Scholar 

  61. Wickenden AD, Kaprielian R, Kassiri Z, et al. The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc Res 1998;37:312–323.

    Article  PubMed  CAS  Google Scholar 

  62. Houser SR, Lakatta EG. Function of the cardiac myocyte in the conundrum of end-stage, dilated human heart failure. Circulation 1999;99:600–604.

    PubMed  CAS  Google Scholar 

  63. Dipla K, Mattiello JA, Jeevanandam V, et al. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 1998;97:2316–2322.

    PubMed  CAS  Google Scholar 

  64. Bartling B, Milting H, Schumann H, et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 1999;100:216II–223.

    Google Scholar 

  65. Birks EJ, Hall JL, Barton PJR, et al. Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation 2005;112:I-57.

    Google Scholar 

  66. Julius BK, Spillmann M, Vassalli G, et al. Angina pectoris in patients with aortic stenosis and normal coronary arteries. Mechanisms and pathophysiological concepts. Circulation 1997;95:892–898.

    PubMed  CAS  Google Scholar 

  67. Haider AW, Larson MG, Benjamin EJ, et al. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 1998;32:1454–1459.

    Article  PubMed  CAS  Google Scholar 

  68. Okin PM, Roman MJ, Devereux RB, et al. Electrocardiographic identification of increased left ventricular mass by simple voltage-duration products. J Am Coll Cardiol 1995;25:417–423.

    Article  PubMed  CAS  Google Scholar 

  69. Devereux RB, Casale PN, Eisenberg RR, et al. Electrocardiographic detection of left ventricular hypertrophy using echocardiographic determination of left ventricular mass as the reference standard. Comparison of standard criteria, computer diagnosis and physician interpretation. J Am Coll Cardiol 1984;3:82–87.

    Article  PubMed  CAS  Google Scholar 

  70. Romhilt DW, Estes EH, Jr. A point-score system for the ECG diagnosis of left ventricular hypertrophy. Am Heart J 1968;75:752–758.

    Article  PubMed  CAS  Google Scholar 

  71. Surawicz B. Stretching the limits of the electrocardiogram’s diagnostic utility. J Am Coll Cardiol 1998;32:483–485.

    Article  PubMed  CAS  Google Scholar 

  72. Charron P, Dubourg O, Desnos M, et al. Diagnostic value of electrocardiography and echocardiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation 1997;96:214–219.

    PubMed  CAS  Google Scholar 

  73. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997;30:1527–1533.

    Article  PubMed  CAS  Google Scholar 

  74. Ilercil A, O’Grady MJ, Roman MJ, et al. Reference values for echocardiographic measurements in urban and rural populations of differing ethnicity: the Strong Heart Study. J Am Soc Echocardiogr 2001;14:601–611.

    Article  PubMed  CAS  Google Scholar 

  75. Myerson SG, Bellenger NG, Pennell DJ. Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 2002;39:750–755.

    Article  PubMed  CAS  Google Scholar 

  76. Lorenz CH, Walker ES, Morgan VL, et al. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1999;1:7–21.

    PubMed  CAS  Google Scholar 

  77. Nagueh SF, Lakkis NM, Middleton KJ, et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 1999;99:254–261.

    PubMed  CAS  Google Scholar 

  78. Brogan WC III, Hillis LD, Flores ED, et al. The natural history of isolated left ventricular diastolic dysfunction. Am J Med 1992;92:627–630.

    Article  PubMed  Google Scholar 

  79. Koren MJ, Devereux RB, Casale PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991;114:345–352.

    PubMed  CAS  Google Scholar 

  80. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol 1995;25:879–884.

    Article  PubMed  CAS  Google Scholar 

  81. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  82. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002;105:1503–1508.

    Article  PubMed  Google Scholar 

  83. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 2002;105:1387–1393.

    Article  PubMed  Google Scholar 

  84. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006;355:251–259.

    Article  PubMed  CAS  Google Scholar 

  85. Vasan RS, Larson MG, Benjamin EJ, et al. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a populationbased cohort. J Am Coll Cardiol 1999;33:1948–1955.

    Article  PubMed  CAS  Google Scholar 

  86. Setaro JF, Soufer R, Remetz MS, et al. Long-term outcome in patients with congestive heart failure and intact systolic left ventricular performance. Am J Cardiol 1992;69:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  87. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 2006;118:10–24.

    Article  PubMed  CAS  Google Scholar 

  88. Monrad ES, Hess OM, Murakami T, et al. Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation 1988;77:1345–1355.

    PubMed  CAS  Google Scholar 

  89. Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: the Losartan Intervention for Endpoint reduction in Hypertension (LIFE) Study. Circulation 2003;108:684–690.

    Article  PubMed  CAS  Google Scholar 

  90. Koren MJ, Ulin RJ, Koren AT, et al. Left ventricular mass change during treatment and outcome in patients with essential hypertension. Am J Hypertens 2002;15:1021–1028.

    Article  PubMed  Google Scholar 

  91. Rials SJ, Wu Y, Xu X, et al. Regression of left ventricular hypertrophy with captopril restores normal ventricular action potential duration, dispersion of refractoriness, and vulnerability to inducible ventricular fibrillation. Circulation 1997;96:1330–1336.

    PubMed  CAS  Google Scholar 

  92. Krayenbuehl HP, Hess OM, Monrad ES, et al. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 1989;79:744–755.

    PubMed  CAS  Google Scholar 

  93. Zafeiridis A, Jeevanandam V, Houser SR, et al. Regression of cellular hypertrophy after left ventricular assist device support. Circulation 1998;98:656–662.

    PubMed  CAS  Google Scholar 

  94. Schmieder RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996;275:1507–1513.

    Article  PubMed  CAS  Google Scholar 

  95. Baker KM, Chernin MI, Wixson SK, et al. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990;259:H324–H332.

    PubMed  CAS  Google Scholar 

  96. Mathew J, Sleight P, Lonn E, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 2001;104:1615–1621.

    Article  PubMed  CAS  Google Scholar 

  97. Moravec CS, Ruhe T, Cifani JR, et al. Structural and functional consequences of minoxidil-induced cardiac hypertrophy. J Pharmacol Exp Ther 1994;269:290–296.

    PubMed  CAS  Google Scholar 

  98. Muiesan ML, Salvetti M, Rizzoni D, et al. Association of change in left ventricular mass with prognosis during longterm antihypertensive treatment. J Hypertens 1995;13:1091–1095.

    Article  PubMed  CAS  Google Scholar 

  99. Mazur W, Nagueh SF, Lakkis NM, et al. Regression of left ventricular hypertrophy after nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy. Circulation 2001;103:1492–1496.

    PubMed  CAS  Google Scholar 

  100. Deb SJ, Schaff HV, Dearani JA, et al. Septal myectomy results in regression of left ventricular hypertrophy in patients with hypertrophic obstructive cardiomyopathy. Ann Thorac Surg 2004;78:2118–2122.

    Article  PubMed  Google Scholar 

  101. Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 2001;103:789–791.

    PubMed  CAS  Google Scholar 

  102. Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001;104:317–324.

    Article  PubMed  CAS  Google Scholar 

  103. Senthil V, Chen SN, Tsybouleva N, et al. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 2005;01.

    Google Scholar 

  104. Marian AJ, Senthil V, Chen SN, et al. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol 2006;47:827–834.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Marian, A.J., Willerson, J.T. (2007). Cardiac Hypertrophy. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_54

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics