Skip to main content

Magnesium in the Central Nervous System

  • Chapter
New Perspectives in Magnesium Research

Abstract

It has been almost a century since a role for magnesium in the central nervous system (CNS) was first proposed. Despite intensive efforts, the subsequent 75 years saw few advances in our understanding of magnesium’s precise role in brain function or the mechanisms by which the cation infl uences these functions. More recently, the advent of noninvasive techniques to measure intracellular free magnesium concentration, plus the recognition that magnesium plays a critical role in regulating neurotransmitter receptor function, have ushered in a new era for magnesium research in neuroscience. The result has been thousands of published studies describing various effects of magnesium in the CNS, ranging from effects on normal physiology and biochemistry to modulation of pathological events at the molecular level. The current review critically examines the evidence suggesting that alterations in intracellular free magnesium concentration may be an injury factor in acute and chronic CNS injury, as well as the potential for magnesium administration to be neuroprotective under these conditions. Finally, the reasons for contradictory results in the literature regarding therapeutic efficacy are discussed, with an emphasis on cellular energy state and how it may affect treatment, as well as dosage strategies and the potential for adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peck CH, Meltzer SJ. Anesthesia in human beings by intravenous injection of magnesium sulfate. JAMA 1916;67:1131–1133.

    CAS  Google Scholar 

  2. Birch NJ, ed. Magnesium and the Cell. London: Academic Press; 1993.

    Google Scholar 

  3. Alvarez-Leefmans FJ, Giraldez F, Gamino SM. Intracellular free magnesium in excitable cells: its measurements and its biological significance. Can J Physiol Pharmacol 1987;65:915–925.

    PubMed  CAS  Google Scholar 

  4. London RE. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol 1991;53:241–258.

    PubMed  CAS  Google Scholar 

  5. Gupta RK, Gupta P, Yushok WD, Rose ZB. On the noninvasive measurements of intracellular free magnesium by 31P NMR spectroscopy. Physiol Chem Physics Med NMR 1983;15:265–280.

    CAS  Google Scholar 

  6. Gupta RK, Gupta P. NMR studies of intracellular metal ions in intact cells and tissues. Ann Rev Biophys Bioeng 1984;13:21–43.

    Google Scholar 

  7. Vink R, McIntosh TK, Demediuk P, Faden AI. Decrease in total and free magnesium concentration following traumatic brain injury in rats. Biochem Biophys Res Commun 1987;149:594–599.

    Article  PubMed  CAS  Google Scholar 

  8. Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI. Decline in intracellular free magnesium concentration is associated with irreversible tissue injury following brain trauma. J Biol Chem 1988;263:757–761.

    PubMed  CAS  Google Scholar 

  9. Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B. In vivo (31)PMRS assessment of cytosolic [Mg(2 )] in the human skeletal muscle in different metabolic conditions. Magn Reson Imaging 2000;18:607–614.

    Article  PubMed  CAS  Google Scholar 

  10. Chollet D, Franken P, Raffin Y, Malafosse A, Widmer J, Tafti M. Blood and brain magnesium in inbred mice and their correlation with sleep quality. Am J Physiol Regul Integr Comp Physiol 2000;279:R2173–R2178.

    PubMed  CAS  Google Scholar 

  11. Andrasi E, Igaz S, Molnar Z, Mako S. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes Res 2000;13:189–196.

    PubMed  CAS  Google Scholar 

  12. McIntosh TK, Faden AI, Yamakami I, Vink R. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioural studies. J Neurotrauma 1988;5: 17–31.

    PubMed  CAS  Google Scholar 

  13. McIntosh TK, Vink R, Soares H, Hayes RL, Simon RP. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem 1990;55:1170–1179.

    Article  PubMed  CAS  Google Scholar 

  14. Corkey BE, Duszynski J, Rich TL, Matschinsky B, Williamson JR. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem 1986;261:2567–2574.

    PubMed  CAS  Google Scholar 

  15. Heath DL, Vink R. Traumatic brain axonal injury produces sustained decline in intracellular free magnesium concentration. Brain Res 1996;738:150–153.

    Article  PubMed  CAS  Google Scholar 

  16. Cernak I, Radosevic P, Malicevic Z, Savic J. Experimental magnesium depletion in adult rabbits caused by blast overpressure. Magnes Res 1995;8:249–259.

    PubMed  CAS  Google Scholar 

  17. Suzuki M, Nishina M, Endo M, et al. Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats. Gen Pharmacol 1997;28:119–121.

    PubMed  CAS  Google Scholar 

  18. Smith DH, Cecil KM, Meaney DF, et al. Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 1998;15:665–674.

    PubMed  CAS  Google Scholar 

  19. Vink R, Heath DL, McIntosh TK. Acute and prolonged alterations in brain free magnesium following fluid percussion induced brain trauma in rats. J Neurochem 1996;66:2477–2483.

    Article  PubMed  CAS  Google Scholar 

  20. Heath DL, Vink R. Blood free magnesium concentration declines following graded experimental traumatic brain injury. Scand J Clin Lab Invest 1998;58: 161–166.

    Article  PubMed  CAS  Google Scholar 

  21. Polderman KH, Bloemers FW, Peerdeman SM, Girbes AR. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med 2000;28:2022–2025.

    Article  PubMed  CAS  Google Scholar 

  22. Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM. Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest 1995;55:671–677.

    PubMed  CAS  Google Scholar 

  23. Cernak I, Savic VJ, Kotur J, Prokic V, Veljovic M, Grbovic D. Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma 2000;17:53–68.

    PubMed  CAS  Google Scholar 

  24. Frankel H, Haskell R, Lee SY, Miller D, Rotondo M, Schwab CW. Hypomagnesemia in trauma patients. World J Surg 1999;23:966–999.

    Article  PubMed  CAS  Google Scholar 

  25. Bareyre FM, Saatman KE, Helfaer MA, et al. Alterations in ionized and total blood magnesium after experimental traumatic brain injury: relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride. J Neurochem 1999;73:271–280.

    Article  PubMed  CAS  Google Scholar 

  26. Cavaliere F, Sciarra M, Crea MA, Rossi M, Proietti R. Variazioni del magnesio sierico ed urinario in pazienti tramatizzati cranici. Recent Prog Med 1985;76: 561–566.

    Google Scholar 

  27. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Grossman RG, Robertson CS. Simultaneous measurement of cortical potassium, calcium, and magnesium levels measured in head injured patients using microdialysis with ion chromatography. Acta Neurochir Suppl (Wien) 1999;75:35–37.

    CAS  Google Scholar 

  28. Lee MS, Wu YS, Yang DY, Lee JB, Cheng FC. Significantly decreased extracellular magnesium in brains of gerbils subjected to cerebral ischemia. Clin Chim Acta 2002;318:121–125.

    Article  PubMed  CAS  Google Scholar 

  29. Helpern JA, Van de Linde AMQ, Welch KMA, et al. Acute elevation and recovery of intracellular Mg2+ following human focal cerebral ischemia. Neurol 1993;43:1577–1581.

    CAS  Google Scholar 

  30. Cheng C, Reynolds IJ. Subcellular localization of glutamate-stimulated intracellular magnesium concentration changes in cultured rat forebrain neurons using confocal microscopy. Neuroscience 2000;95:973–979.

    Article  PubMed  CAS  Google Scholar 

  31. Borowik H, Pryszmont M. Concentration of magnesium in serum and cerebrospinal fluid in patients with stroke. Neurol Neurochir Pol 1998;32:1377–1383.

    PubMed  CAS  Google Scholar 

  32. Lampl Y, Geva D, Gilad R, Eshel Y, Ronen L, Sarova-Pinhas I. Cerebrospinal fluid magnesium level as a prognostic factor in ischaemic stroke. J Neurol 1998;245: 584–588.

    Article  PubMed  CAS  Google Scholar 

  33. Altura BM, Gebrewold A, Zhang AM, Altura BT, Gupta RK. Magnesium defi-ciency exacerbates brain injury and stroke mortality induced by alcohol-a P-31-NMR in vivo study. Alcohol 1998;15:181–183.

    Article  PubMed  CAS  Google Scholar 

  34. Demougeot C, Bobillier-Chaumont S, Mossiat C, Marie C, Berthelot A. Effect of diets with different magnesium content in ischemic stroke rats. Neurosci Lett 2004;362:17–20.

    Article  PubMed  CAS  Google Scholar 

  35. Williams GD, Smith GD. Application of the accurate assessment of intracellular magnesium and pH from the 31P shifts of ATP to cerebral hypoxia-ischemia in neonatal rat. Magn Reson Med 1995;33:853–857.

    PubMed  CAS  Google Scholar 

  36. Powell SR, Wahezi SE, Maulik D. The effect of in utero hypoxia on fetal heart and brain trace elements. J Trace Elem Med Biol 2002;16:245–248.

    Article  PubMed  CAS  Google Scholar 

  37. Ilves P, Blennow M, Kutt E, et al. Concentrations of magnesium and ionized calcium in umbilical cord blood in distressed term newborn infants with hypoxicischemic encephalopathy. Acta Paediatr 1996;85:1348–1350.

    PubMed  CAS  Google Scholar 

  38. Durlach J, Bac P, Durlach V, Durlach A, Bara M, Guiet-Bara A. Are age-related neurodegenerative diseases linked with various types of magnesium depletion? Magnes Res 1997;10:339–353.

    PubMed  CAS  Google Scholar 

  39. Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin T, Yuen WK. Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 1989;16:310–314.

    PubMed  CAS  Google Scholar 

  40. Barbiroli B, Martinelli P, Patuelli A, et al. Phosphorus magnetic resonance spectroscopy in multiple system atrophy and Parkinson’s disease. Mov Disord 1999;14:430–435.

    Article  PubMed  CAS  Google Scholar 

  41. Yasui M, Kihira T, Ota K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 1992;13:593–600.

    PubMed  CAS  Google Scholar 

  42. Yasui M, Ota K. Aluminum decreases the magnesium concentration of spinal cord and trabecular bone in rats fed a low calcium, high aluminum diet. J Neurol Sci 1998;157:37–41.

    Article  PubMed  CAS  Google Scholar 

  43. Oyanagi K. The nature of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam and magnesium deficiency. Parkinsonism Relat Disord 2005;11(suppl. 1):S17–S23.

    Article  PubMed  Google Scholar 

  44. Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B. Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 2002;277:16116–16123.

    Article  PubMed  CAS  Google Scholar 

  45. Lemke MR. Plasma magnesium decrease and altered calcium/magnesium ratio in severe dementia of the Alzheimer type. Biol Psychiatry 1995;37:341–343.

    Article  PubMed  CAS  Google Scholar 

  46. Durlach J. Magnesium depletion and pathogenesis of Alzheimer’s disease. Magnes Res 1990;3:217–218.

    PubMed  CAS  Google Scholar 

  47. Starkstein SE, Jorge R. Dementia after traumatic brain injury. Int Psychogeriatr 2005;17(suppl. 1):S93–S107.

    Article  PubMed  Google Scholar 

  48. Van Den Heuvel C, Finnie JW, Blumbergs PC, et al. Upregulation of neuronal amyloid precursor protein (APP) and APP mRNA following magnesium sulphate (MgSO4) therapy in traumatic brain injury. J Neurotrauma 2000;17:1041–1053.

    Google Scholar 

  49. Hinsberger AD, Williamson PC, Carr TJ, et al. Magnetic resonance imaging volumetric and phosphorus 31 magnetic resonance spectroscopy measurements in schizophrenia. J Psychiatry Neurosci 1997;22:111–117.

    PubMed  CAS  Google Scholar 

  50. McIntosh TK, Vink R, Yamakami I, Faden AI. Magnesium protects against neurological deficit after brain injury. Brain Res 1989;482:252–260.

    Article  PubMed  CAS  Google Scholar 

  51. Bareyre FM, Saatman KE, Raghupathi R, McIntosh TK. Postinjury treatment with magnesium chloride attenuates cortical damage after traumatic brain injury in rats. J Neurotrauma 2000;17:1029–1039.

    PubMed  CAS  Google Scholar 

  52. Heath DL, Vink R. Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotrauma 1998;15:183–189.

    PubMed  CAS  Google Scholar 

  53. Heath DL, Vink R. Delayed therapy with magnesium up to 24h following traumatic brain injury improves motor outcome. J Neurosurg 1999;90:504–509.

    PubMed  CAS  Google Scholar 

  54. Vink R, O’Connor CA, Nimmo AJ, Heath DL. Magnesium attenuates persistent functional deficits following diffuse traumatic brain injury in rats. Neurosci Lett 2003;336:41–44.

    Article  PubMed  CAS  Google Scholar 

  55. Turner RJ, Dasilva KW, O’Connor C, van den Heuvel C, Vink R. Magnesium gluconate offers no more protection than magnesium sulphate following diffuse traumatic brain injury in rats. J Am Coll Nutr 2004;23:541S–544S.

    PubMed  CAS  Google Scholar 

  56. Hoane MR, Irish SL, Marks BB, Barth TM. Preoperative regimens of magnesium facilitate recovery of function and prevent subcortical atrophy following lesions of the rat sensorimotor cortex. Brain Res Bull 1998;45:45–51.

    Article  PubMed  CAS  Google Scholar 

  57. Yang Y, Qiu L, Fayyaz A, Shuaib A. Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett 2000;285:119–122.

    Article  PubMed  CAS  Google Scholar 

  58. Lampl Y, Gilad R, Geva D, Eshel Y, Sadeh M. Intravenous administration of magnesium in acute stroke: a randomized double-blind study. Clin Neuropharmacol 2001;24:11–15.

    Article  PubMed  CAS  Google Scholar 

  59. Miles AN, Majda BT, Meloni BP, Knuckey NW. Postischemic intravenous administration of magnesium sulfate inhibits hippocampal CA1 neuronal death after transient global ischemia in rats. Neurosurgery 2001;49:1143–1150.

    Article  Google Scholar 

  60. Hallak M, Hotra JW, Kupsky WJ. Magnesium sulfate protection of fetal rat brain from severe maternal hypoxia. Obstet Gynecol 2000;96:124–128.

    Article  PubMed  CAS  Google Scholar 

  61. Pyne GJ, Cadoux-Hudson TA, Clark JF. Magnesium protection against in vitro cerebral vasospasm after subarachnoid haemorrhage. Br J Neurosurg 2001;15: 409–415.

    Article  PubMed  CAS  Google Scholar 

  62. Veyna RS, Seyfried D, Burke DG, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hemorrhage. J Neurosurg 2002;96:510–514.

    PubMed  CAS  Google Scholar 

  63. Hallak M, Kupsky WJ, Hotra JW, Evans JB. Fetal rat brain damage caused by maternal seizure activity: prevention by magnesium sulfate. Am J Obstet Gynecol 1999;181:828–834.

    Article  PubMed  CAS  Google Scholar 

  64. Galvin KA, Oorschot DE. Postinjury magnesium sulfate treatment is not markedly neuroprotective for striatal medium spiny neurons after perinatal hypoxia/ ischemia in the rat. Pediatr Res 1998;44:740–745.

    PubMed  CAS  Google Scholar 

  65. Greenwood K, Cox P, Mehmet H, et al. Magnesium sulfate treatment after transient hypoxia-ischemia in the newborn piglet does not protect against cerebral damage. Pediatr Res 2000;48:346–350.

    PubMed  CAS  Google Scholar 

  66. de Haan HH, Gunn AJ, Williams CE, Heymann MA, Gluckman PD. Magnesium sulfate therapy during asphyxia in near-term fetal lambs does not compromise the fetus but does not reduce cerebral injury. Am J Obstet Gynecol 1999;176:18–27.

    Google Scholar 

  67. Sameshima H, Ota A, Ikenoue T. Pretreatment with magnesium sulfate protects against hypoxic-ischemic brain injury but postasphyxial treatment worsens brain damage in seven-day-old rats. Am J Obstet Gynecol 1999;180:725–730.

    Article  PubMed  CAS  Google Scholar 

  68. Milani H, Lepri ER, Giordani F, Favero-Filho LA. Magnesium chloride alone or in combination with diazepam fails to prevent hippocampal damage following transient forebrain ischemia. Braz J Med Biol Res 1999;32:1285–1293.

    Article  PubMed  CAS  Google Scholar 

  69. Heath DL, Vink R. Optimization of magnesium therapy following severe diffuse axonal brain injury in rats. J Pharmacol Exp Ther 1999;288:1311–1316.

    PubMed  CAS  Google Scholar 

  70. Muir KW. New experimental and clinical data on the efficacy of pharmacological magnesium infusions in cerebral infarcts. Magnes Res 1998;11:43–56.

    PubMed  CAS  Google Scholar 

  71. Hallak M, Berman RF, Irtenkauf SM, Evans MI, Cotton DB. Peripheral magnesium sulphate enters the brain and increases the threshold for hippocampal seizures in rats. Am J Obstet Gynecol 1992;167:1605–1610.

    PubMed  CAS  Google Scholar 

  72. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 1986;19:105–111.

    Article  PubMed  CAS  Google Scholar 

  73. Lin JY, Chung SY, Lin MC, Cheng FC. Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci 2002;71:803–811.

    Article  PubMed  CAS  Google Scholar 

  74. Hallak M, Berman RF, Irtenkauf SM, Janusz CA, Cotton DB. Magnesium sulphate treatment decreases N-Methyl-D-Aspartate receptor binding in the rat brain-an autoradiographic study. J Soc Gynecol Invest 1994;1:25–30.

    CAS  Google Scholar 

  75. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 1984;309:261–263.

    Article  PubMed  CAS  Google Scholar 

  76. Johnson JW, Ascher P. Voltage-dependent block by intracellular Mg2+ of Nmethyl-D-aspartate activated channels. J Biophys 1990;57:1085–1090.

    Article  CAS  Google Scholar 

  77. Hoffman DJ, Marro PJ, McGowan JE, Mishra OP, Delivoria Papadopoulos M. Protective effect of MgSO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxia the newborn piglet. Brain Res 1994;644: 144–149.

    Article  PubMed  CAS  Google Scholar 

  78. Frandsen A, Schousboe A. Effect of magnesium on NMDA mediated toxicity and increases in [Ca2 ]i and cGMP in cultured neocortical neurones: evidence for distinct regulation of different responses. Neurochem Int 1994;25:303–308.

    Article  CAS  Google Scholar 

  79. Strecker GJ. Blockade of NMDA activated channels by magnesium in the immature rat hippocampus. J Neurophysiol 1994;72:1538–1548.

    PubMed  CAS  Google Scholar 

  80. Zhang L, Rzigalinski BA, Ellis EF, Satin LS. Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 1996;274:1921–1923.

    Article  PubMed  CAS  Google Scholar 

  81. Agus ZS, Morad M. Modulation of cardiac ion channels by magnesium. Annu Rev Physiol 1991;53:299–307.

    Article  PubMed  CAS  Google Scholar 

  82. van den Burgh WM, Zuur JK, Kamerling NA, et al. Role of magnesium in the reduction of ischemic deploarization and lesion volume after experimental subarachnoid hemorrhage. J Neurosurg 2002;97:416–422.

    Article  Google Scholar 

  83. Nakajima W, Ishida A, Takada G. Magnesium attenuates a striatal dopamine increase induced by anoxia in the neonatal rat brain: an in vivo microdialysis study. Pediatr Res 1997;41:809–814.

    PubMed  CAS  Google Scholar 

  84. van der Hel WS, van den Bergh WM, Nicolay K, Tulleken KA, Dijkhuizen RM. Suppression of cortical spreading depressions after magnesium treatment in the rat. Neuroreport 1998;9:2179–2182.

    Article  PubMed  Google Scholar 

  85. Kemp PA, Gardiner SM, Bennnett T, Rubin PC. Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-I, angiotensin-II and neuropeptide Y, but not that caused by N(G)-nitro-L-arginine methyl ester, in conscious rats. Clin Sci 1993;85:175–181.

    PubMed  CAS  Google Scholar 

  86. Kemp PA, Gardiner SM, March JE, Rubin PC, Bennett T. Assessment of the effects of endothelin-1 and magnesium sulphate on regional blood flows in conscious rats, by the coloured microsphere reference technique. Br J Pharmacol 1999;126:621–626.

    Article  PubMed  CAS  Google Scholar 

  87. Altura BM, Altura BT, Gupta RK. Alcohol intoxication results in rapid loss in free magnesium in brain and disturbances in brain bioenergetics: relation to cerebrospasm, alcohol-induced strokes, and barbiturate anesthesia-induced deaths. Magnes Trace Elem 1992;10:122–135.

    CAS  Google Scholar 

  88. Ustun ME, Duman A, Ogun CO, Vatansev H, Ak A. Effects of nimodipine and magnesium sulfate on endogenous antioxidant levels in brain tissue after experimental head trauma. J Neurosurg Anesthesiol 2001;13:227–232.

    Article  PubMed  CAS  Google Scholar 

  89. Kaya M, Kucuk M, Kalayci RB, et al. Magnesium sulfate attenuates increased blood-brain barrier permeability during insulin-induced hypoglycemia in rats. Can J Physiol Pharmacol 2001;79:793–798.

    Article  PubMed  CAS  Google Scholar 

  90. Feldman Z, Gurevitch B, Artru AA, et al. Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 1996;85: 131–137.

    PubMed  CAS  Google Scholar 

  91. Esen F, Erdem T, Aktan D, et al. Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. J Neurosurg Anesthesiol 2003;15:119–125.

    Article  PubMed  Google Scholar 

  92. Vink R, Cernak I. Regulation of brain intracellular free magnesium following traumatic injury to the central nervous system. Front Biosci 2000;5:656–665.

    Google Scholar 

  93. Birnbaumer L, Abramowitz J, Brown AM. Receptor-effector coupling by G proteins. Biochim Biophys Acta 1990;1031:163–224.

    PubMed  CAS  Google Scholar 

  94. Vink R, Golding EM, Headrick JP. Bioenergetic analysis of oxidative metabolism following traumatic brain injury in rats. J Neurotrauma 1994;11:265–274.

    Article  PubMed  CAS  Google Scholar 

  95. Ustun ME, Gurbilek M, Ak A, Vatansev H, Duman A. Effects of magnesium sulfate on tissue lactate and malondialdehyde levels in experimental head trauma. Intensive Care Med 2001;27:264–268.

    Article  PubMed  CAS  Google Scholar 

  96. Sharikabad MN, Ostbye KM, Brors O. Increased [Mg2+]o reduces Ca2+ influx and disruption of mitochondrial membrane potential during reoxygenation. Am J Physiol Heart Circ Physiol 2001;281:H2113–H2123.

    PubMed  CAS  Google Scholar 

  97. Xu M, Dai W, Deng X. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury. Chin J Traumatol 2002;4:361–364.

    Google Scholar 

  98. Halestrap AP, Kerr PM, Javadov S, Woodfield KY. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998;1366:79–94.

    Article  PubMed  CAS  Google Scholar 

  99. Malpuech-Brugere C, Nowacki W, Gueux E, et al. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br J Nutr 1999;81:405–411.

    PubMed  CAS  Google Scholar 

  100. Morrill MA, Gupta RK, Kostellow AB, et al. Mg2+ modulates membrane shingolipid and lipid second messenger levels in vascular smooth muscle cells. FEBS Lett 1998;440:167–171.

    Article  PubMed  CAS  Google Scholar 

  101. Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front Biosci 1999;4:D607–D617.

    PubMed  CAS  Google Scholar 

  102. Maulik D, Qayyum I, Powell SR, Karantza M, Mishra OP, Delivoria-Papadopoulos M. Post-hypoxic magnesium decreases nuclear oxidative damage in the fetal guinea pig brain. Brain Res 2001;26:130–136.

    Article  Google Scholar 

  103. Zhang C, Raghupathi R, LaPlaca MC, Bareyre FM, McIntosh TK. Changes in DNA fragmentation factor (DFF) following experimental brain trauma in the rat: effect of posttraumatic magnesium treatment. J Neurotrauma 1998;15:904.

    Google Scholar 

  104. Muir JK, Raghupathi R, Emery DL, Bareyre FM, McIntosh TK. Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats. Exp Neurol 1999;159:584–593.

    Article  PubMed  CAS  Google Scholar 

  105. Turkyilmaz C, Turkyilmaz Z, Atalay Y, Soylemezoglu F, Celasun B. Magnesium pretreatment reduces neuronal apoptosis in newborn rats in hypoxia-ischemia. Brain Res 2002;955:133–137.

    Article  PubMed  CAS  Google Scholar 

  106. Ravishankar S, Ashraf QM, Fritz K, Mishra OP, Delivoria-Papadopoulos M. Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 2001;18:23–29.

    Article  Google Scholar 

  107. Sameshima H, Ikenoue T. Effect of long-term, postasphyxial administration of magnesium sulfate on immunostaining of microtubule-associated protein-2 and activated caspase-3 in 7-day-old rat brain. J Soc Gynecol Invest 2002;9:203–209.

    Article  CAS  Google Scholar 

  108. Gasparovic C, Berghmans K. Ca2-and Mg2-modulated lipolysis in neonatal rat brain slices observed by one-and two-dimensional NMR. J Neurochem 1998;71:1727–1732.

    Article  PubMed  CAS  Google Scholar 

  109. Gunther T, Hollriegl V, Vormann J, Bubeck J, Classen HG. Increased lipid peroxidation in rat tissues by magnesium deficiency and vitamin E depletion. Magnes Bull 1994;16:38–43.

    Google Scholar 

  110. Maulik D, Zanelli S, Numagami Y, Ohnishi ST, Mishra OP, Delivoria-Papadopoulos M. Oxygen free radical generation during in-utero hypoxia in the fetal guinea pig brain: the effects of maturity and of magnesium sulfate administration. Brain Res 1999;817:117–122.

    Article  PubMed  CAS  Google Scholar 

  111. Afanas’ev LB, Suslova TB, Chermisina ZP, Abramova NE, Korkina LG. Study of antioxidant properties of metal aspartates. Analyst 1995;120:859–862.

    Article  PubMed  CAS  Google Scholar 

  112. Matkovics B, Kiss I, Kiss SA. The activation by magnesium treatment of antioxidants eliminating the oxygen free radicals in Drosophila melanogaster in vivo. Magnes Res 1997;10:33–38.

    PubMed  CAS  Google Scholar 

  113. Terasaki M, Rubin H. Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis. Proc Natl Acad Sci USA 1985;82:7324–7326.

    Article  PubMed  CAS  Google Scholar 

  114. Saatman KE, Bareyre FM, Grady MS, McIntosh TK. Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J Neuropathol Exp Neurol 2001;60:183–194.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Turner, R.J., Vink, R. (2007). Magnesium in the Central Nervous System. In: Nishizawa, Y., Morii, H., Durlach, J. (eds) New Perspectives in Magnesium Research. Springer, London. https://doi.org/10.1007/978-1-84628-483-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-483-0_28

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-388-8

  • Online ISBN: 978-1-84628-483-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics