Skip to main content

Statistical Approaches to Planning of Accelerated Reliability Testing

  • Reference work entry
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents a few statistical methods for designing test plans in which products are tested under harsher environment with more severe stresses than usual operating conditions. Following a short introduction, three different types of testing conditions are dealt with in Sects. 23.2, 23.3, and 23.4; namely, life testing under constant stress, life testing in which stresses are increased in steps, and accelerated testing by monitoring degradation data. Brief literature surveys of the work done in these areas precede presentations of methodologies in each of these sections.

In Sect. 23.2, we present the conventional framework for designing accelerated test plans using asymptotic variance of maximum likelihood estimators (MLE) derived from the Fisher information matrix. We then give two possible extensions from the framework for accelerated life testing under three different constant stress levels; one based on a nonlinear programming (NLP) formulation so that experimenters can specify the desired number of failures, and one based on an enlarged solution space so that the design of the test plan can be more flexible in view of the many possible limitations in practice. These ideas are illustrated using numerical examples and followed by a comparison across different test plans.

We then present planning of accelerated life testing (ALT) in which stresses are increased in steps and held constant for some time before the next increment. The design strategy is based on a target acceleration factor which specifies the desired time compression needed to complete the test compared to testing under use conditions. Using a scheme similar to backward induction in dynamic programming, an algorithm for planning multiple-step step-stress ALT is presented.

In Sect. 23.4, we consider planning problems for accelerated degradation test (ADT) in which degradation data, instead of lifetime data, are used to predict a productʼs reliability. We give a unifying framework for dealing with both constant-stress and step-stress ADT. An NLP model which minimizes cost with precision constraint is formulated so that the tradeoff between getting more data and the cost of conducting the test can be quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADT:

accelerated degradation test

AF:

acceleration factor

ALT:

accelerated life testing

ART:

accelerated reliability

LCEM:

linear cumulative exposure model

NLP:

nonlinear programming

References

  1. H. Chernoff: Optimal accelerated life designs for estimation, Technometrics 4, 381–408 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Q. Meeker, W. B. Nelson: Optimum censored accelerated life tests for Weibull, extreme value distributions, IEEE Trans. Reliab. 24, 321–332 (1975)

    Article  MathSciNet  Google Scholar 

  3. W. Q. Meeker, G. J. Hahn: How to plan accelerated life tests: some practical guidelines, ASQC Basic Ref. Qual. Control: Stat. Tech. 10 (1985)

    Google Scholar 

  4. W. B. Nelson, T. J. Kielspinski: Theory for optimum censored accelerated life tests for normal and lognormal life distributions, Technometrics 18, 105–114 (1976)

    Article  MATH  Google Scholar 

  5. W. B. Nelson, W. Q. Meeker: Theory for optimum accelerated life tests for Weibull and extreme value distributions, Technometrics 20, 171–177 (1978)

    Article  MATH  Google Scholar 

  6. W. B. Nelson: Accelerated Testing: Statistical Models, Test Plans and Data Analysis (Wiley, New York 1990)

    Google Scholar 

  7. G. B. Yang: Optimum constant-stress accelerated life-test plans, IEEE Trans. Reliab. 43, 575–581 (1994)

    Article  Google Scholar 

  8. G. B. Yang, L. Jin: Best compromise test plans for Weibull distributions with different censoring times, Qual. Reliab. Eng. Int. 10, 411–415 (1994)

    Article  Google Scholar 

  9. L. C. Tang: Planning for accelerated life tests, Int. J. Reliab. Qual. Saf. Eng. 6, 265–275 (1999)

    Article  Google Scholar 

  10. L. C. Tang, A. P. Tan, S. H. Ong: Planning accelerated life tests with three constant stress levels, Comp. Ind. Eng. 42, 439–446 (2002)

    Article  Google Scholar 

  11. L. C. Tang, G. Yang: Planning multiple levels constant stress accelerated life tests, Proc. Ann. Reliab. Maintainab. Symp. , 338–342 (2002)

    Google Scholar 

  12. L. C. Tang, K. Xu: A multiple objective framework for planning accelerated life tests, IEEE Trans. Reliab. 54(1), 58–63 (2005)

    Article  Google Scholar 

  13. W. Q. Meeker, L. A. Escobar: Statistical Methods for Reliability Data (Wiley, New York 1998)

    MATH  Google Scholar 

  14. W. B. Nelson: A bibliography of accelerated test plans, Proc. Ninth ISSAT Int. Conf. Reliability and Quality in Design, Honolulu , 189–193 (2003)available from WNconsult@aol.com

  15. C. Meeter, W. Q. Meeker: Optimum acceleration life tests with a non-constant scale parameter, Technometrics 36, 71–83 (1994)

    Article  MATH  Google Scholar 

  16. L. C. Tang, T. N. Goh, Y. S. Sun, H. L. Ong: Planning ALT for censored two-parameter exponential distribution, Naval Res. Log. 46, 169–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. S. Bai, M. S. Kim, S. H. Lee: Optimum simple step-stress accelerated life tests with censoring, IEEE Trans. Reliab. 38, 528–532 (1989)

    Article  MATH  Google Scholar 

  18. D. S. Bai, M. S. Kim: Optimum simple step-stress accelerated life test for Weibull distribution and type I censoring, Naval Res. Log. Q. 40, 193–210 (1993)

    Article  MATH  Google Scholar 

  19. I. H. Khamis, J. J. Higgins: Optimum 3-step step-stress tests, IEEE Trans. Reliab. 45, 341–345 (1996)

    Article  Google Scholar 

  20. I. H. Khamis: Optimum m-step, step-stress design with k stress variables, Comm. Stat. Comput. Simul. 26, 1301–1313 (1997)

    Article  MATH  Google Scholar 

  21. K. P. Yeo, L. C. Tang: Planning step-stress life-test with a target acceleration-factor, IEEE Trans. Reliab. 48, 61–67 (1999)

    Article  Google Scholar 

  22. S. J. Park, B. J. Yum: Optimal design of accelerated life tests under modified stress loading methods, J. Appl. Stat. 25, 41–62 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. H. Degroot, P. K. Goel: Bayesian estimation, optimal designs in partially accelerated life testing, Naval Res. Log. Q. 26, 223–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. C. Tang: Multiple steps step-stress accelerated test. In: Handbook of Reliability Engineering, ed. by H. Pham (Springer, London 2003) Chap. 24, pp. 441–455

    Chapter  Google Scholar 

  25. J. I. Park, B. J. Yum: Optimal design of accelerated degradation tests for estimating mean lifetime at the use condition, Eng. Optim. 28, 199–230 (1997)

    Article  Google Scholar 

  26. H. F. Yu, C. H. Chiao: An optimal designed degradation experiment for reliability improvement, IEEE Trans. Reliab. 51, 427–433 (2002)

    Article  Google Scholar 

  27. M. Boulanger, L. A. Escobar: Experimental design for a class of accelerated degradation tests, Technometrics 36, 260–272 (1994)

    Article  MATH  Google Scholar 

  28. H. F. Yu, S. T. Tseng: Designing a degradation experiment, Naval Res. Log. 46, 689–706 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. J. Wu, C. T. Chang: Optimal design of degradation tests in presence of cost constraint, Reliab. Eng. Syst. Saf. 76, 109–115 (2002)

    Article  Google Scholar 

  30. G. B. Yang, K. Yang: Accelerated degradation tests with tightened critical values, IEEE Trans. Reliab. 51, 463–468 (2002)

    Article  Google Scholar 

  31. L. C. Tang, G. Yang, M. Xie: Planning step-stress accelerated degradation test with precision constraint, Proc. Ann. Reliab. Maintainab. Symp., 338-342 (2004)

    Google Scholar 

  32. S. J. Park, B. J. Yum, S. Balamurali: Optimal design of step-stress degradation tests in the case of destructive measurement, Qual. Technol. Quant. Man. 1, 105–124 (2004)

    MathSciNet  Google Scholar 

  33. H. F. Yu, S. T. Tseng: Designing a degradation experiment with a reciprocal Weibull degradation rate, Qual. Technol. Quant. Man. 1, 47–63 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loon Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Tang, L. (2006). Statistical Approaches to Planning of Accelerated Reliability Testing. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-84628-288-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-288-1_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-806-0

  • Online ISBN: 978-1-84628-288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics