Skip to main content

Determination of Antibody Structures

  • Protocol
  • First Online:
Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1131))

Abstract

While antibodies share a conserved structural framework, their complementarity-determining region loops are highly variable in size and sequence. Even more variable are the potential ways these loops can be used to interact with antigen. Thus, X-ray crystal structures of antibody Fab fragments and Fab–antigen complexes are critical for a detailed understanding of the antibody–antigen recognition process. This chapter describes the basic procedures necessary for the crystallization and structure determination of antibody Fab fragments by X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  PubMed  Google Scholar 

  2. Burton DR, Poignard P, Stanfield RL et al (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:183–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Griffin L, Lawson A (2011) Antibody fragments as tools in crystallography. Clin Exp Immunol 165:285–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bernstein FC, Koetzle TF, Williams GJ et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  5. Marquart M, Deisenhofer J, Huber R et al (1980) Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J Mol Biol 141:369–391

    Article  CAS  PubMed  Google Scholar 

  6. Harris LJ, Larson SB, Hasel KW et al (1992) The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360:369–372

    Article  CAS  PubMed  Google Scholar 

  7. Harris LJ, Larson SB, Hasel KW et al (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36:1581–1597

    Article  CAS  PubMed  Google Scholar 

  8. Harris LJ, Skaletsky E, McPherson A (1998) Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol 275:861–872

    Article  CAS  PubMed  Google Scholar 

  9. Saphire EO, Parren PW, Pantophlet R et al (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293:1155–1159

    Article  CAS  PubMed  Google Scholar 

  10. Wilson IA, Rini JM, Fremont DH et al (1991) X-ray crystallographic analysis of free and antigen-complexed Fab fragments to investigate structural basis of immune recognition. Methods Enzymol 203:153–176

    Article  CAS  PubMed  Google Scholar 

  11. Smith TJ (1993) Purification of mouse antibodies and Fab fragments. Methods Cell Biol 37:75–93

    Article  CAS  PubMed  Google Scholar 

  12. Stura EA, Fieser GG, Wilson IA (1993) Crystallization of antibodies and antibody-antigen complexes. Immunomethods 3:164–179

    Article  CAS  Google Scholar 

  13. Wenig K, Chatwell L, von Pawel-Rammingen U et al (2004) Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A 101:17371–17376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ofek G, Tang M, Sambor A et al (2004) Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2 F5 in complex with its gp41 epitope. J Virol 78:10724–10737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  CAS  PubMed  Google Scholar 

  16. Stura EA, Wilson IA (1991) The streak seeding technique in protein crystallization. J Cryst Growth 110:270–282

    Article  CAS  Google Scholar 

  17. Ireton GC, Stoddard BL (2004) Microseed matrix screening to improve crystals of yeast cytosine deaminase. Acta Crystallogr D Biol Crystallogr 60:601–605

    Article  PubMed  Google Scholar 

  18. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276A:307–326

    Article  Google Scholar 

  19. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  Google Scholar 

  20. Leslie AGW, Powell HR (2007) Processing diffraction data with Mosflm. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography, vol 245, Springer, Netherlands, pp 41–51

    Google Scholar 

  21. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 55:1718–1725

    Article  CAS  PubMed  Google Scholar 

  22. Acchione M, Lipschultz CA, DeSantis ME et al (2009) Light chain somatic mutations change thermodynamics of binding and water coordination in the HyHEL-10 family of antibodies. Mol Immunol 47:457–464

    Article  CAS  PubMed  Google Scholar 

  23. Rossmann MG (1972) The molecular replacement method. Gordon & Breach, New York

    Google Scholar 

  24. Stanfield RL, Zemla A, Wilson IA et al (2006) Antibody elbow angles are influenced by their light chain class. J Mol Biol 357:1566–1574

    Article  CAS  PubMed  Google Scholar 

  25. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  Google Scholar 

  26. Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50:157–163

    Article  Google Scholar 

  27. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr 55:484–491

    Article  CAS  PubMed  Google Scholar 

  28. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  29. Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  Google Scholar 

  30. Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367

    Article  CAS  PubMed  Google Scholar 

  31. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  CAS  PubMed  Google Scholar 

  32. Blanc E, Roversi P, Vonrhein C et al (2004) Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr D Biol Crystallogr 60:2210–2221

    Article  CAS  PubMed  Google Scholar 

  33. Shirai H, Kidera A, Nakamura H (1996) Structural classification of CDR-H3 in antibodies. FEBS Lett 399:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Kleywegt GJ (2009) On vital aid: the why, what and how of validation. Acta Crystallogr D Biol Crystallogr 65:134–139

    Article  CAS  PubMed  Google Scholar 

  35. Kabat EA, Wu TT, Perry HM et al (1991) Sequences of proteins of immunological interest, vol 1, 5th edn. U.S. Department of Health and Human Services, Bethesda, MD

    Google Scholar 

  36. Lefranc MP, Giudicelli V, Ginestoux C et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37:D1006–D1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    Article  CAS  PubMed  Google Scholar 

  38. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  CAS  PubMed  Google Scholar 

  39. Martin AC, Thornton JM (1996) Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 263:800–815

    Article  CAS  PubMed  Google Scholar 

  40. North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406:228–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Stura EA, Nemerow GR, Wilson IA (1992) Strategies in the crystallization of glycoproteins and protein complexes. J Cryst Growth 122:273–285

    Article  CAS  Google Scholar 

  42. Rypniewski WR, Holden HM, Rayment I (1993) Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: an X-ray analysis at 1.8-Å resolution. Biochemistry 32:9851–9858

    Article  CAS  PubMed  Google Scholar 

  43. Rubinson KA, Ladner JE, Tordova M et al (2000) Cryosalts: suppression of ice formation in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 56:996–1001

    Article  CAS  PubMed  Google Scholar 

  44. Garman EF, Mitchell EP (1996) Glycerol concentrations required for cryoprotection of 50 typical protein crystallization conditions. J Appl Crystallogr 29:584–587

    Article  CAS  Google Scholar 

  45. Garman E, Owen RL (2007) Cryocrystallography of macromolecules: practice and optimization. Methods Mol Biol 364: 1–18

    CAS  PubMed  Google Scholar 

  46. Garman E, Sweet RM (2007) X-ray data collection from macromolecular crystals. Methods Mol Biol 364:63–94

    CAS  PubMed  Google Scholar 

  47. Jain D, Lamour V (2010) Computational tools in protein crystallography. Methods Mol Biol 673:129–156

    Article  CAS  PubMed  Google Scholar 

  48. Abhinandan KR, Martin AC (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This is manuscript number 21975 from the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Stanfield, R.L. (2014). Determination of Antibody Structures. In: Ossipow, V., Fischer, N. (eds) Monoclonal Antibodies. Methods in Molecular Biology, vol 1131. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-992-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-992-5_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-991-8

  • Online ISBN: 978-1-62703-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics