Skip to main content

Photooxidation Microscopy: Bridging the Gap Between Fluorescence and Electron Microscopy

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

  • 2447 Accesses

Abstract

Eighty years after its development, electron microscopy still represents the gold standard in terms of resolution. A major disadvantage is, however, the requirement for fixed specimens—especially in view of the numerous live fluorescence microscopy methods that have been developed during the last few decades. This drawback can be largely compensated by combining both microscopy techniques, live imaging and electron microscopy, by transforming a fluorescent signal into one that can be visualized in the electron microscope. This can be achieved by employing photooxidation. This procedure uses the production of reactive oxygen species by excited fluorescent dyes to oxidize the substrate diaminobenzidine, which in turn forms an electron-dense precipitate in the immediate proximity of the dye. In this chapter, we explain the photooxidation protocol in detail, focusing mainly on FM dyes as markers of membrane trafficking, especially in synaptic physiology. We also discuss the use of numerous other labels for photooxidation applications. We conclude that this approach is applicable to a wide variety of cellular targets and processes and therefore has a great potential in linking diffraction-limited light imaging to the high resolution of electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wildanger D, Medda R, Kastrup L et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236(1):35–43

    Article  CAS  PubMed  Google Scholar 

  3. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  4. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57(2):499–524

    Article  CAS  PubMed  Google Scholar 

  5. Novikoff AB (1963) Lysosomes in the physiology and pathology of cells: contributions of staining methods. In: de Rueck AVS, Cameron MP (eds) Ciba foundation symposium-lysosomes. Little, Brown and Company, Boston

    Google Scholar 

  6. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  7. Graham RC Jr, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14(4):291–302

    Article  CAS  PubMed  Google Scholar 

  8. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344

    Article  CAS  PubMed  Google Scholar 

  9. Ceccarelli B, Hurlbut WP, Mauro A (1972) Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J Cell Biol 54(1):30–38

    Article  CAS  PubMed  Google Scholar 

  10. Holtzman E, Freeman AR, Kashner LA (1971) Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science 173(998):733–736

    Article  CAS  PubMed  Google Scholar 

  11. Teichberg S, Holtzman E, Crain SM et al (1975) Circulation and turnover of synaptic vesicle membrane in cultured fetal mammalian spinal cord neurons. J Cell Biol 67(1):215–230

    Article  CAS  PubMed  Google Scholar 

  12. Schacher S, Holtzman E, Hood DC (1976) Synaptic activity of frog retinal photoreceptors. A peroxidase uptake study. J Cell Biol 70(1):178–192

    Article  CAS  PubMed  Google Scholar 

  13. Gennaro JF Jr, Nastuk WL, Rutherford DT (1978) Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. J Physiol 280:237–247

    CAS  PubMed  Google Scholar 

  14. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217(4563):953–955

    Article  CAS  PubMed  Google Scholar 

  15. Sandell JH, Masland RH (1988) Photoconversion of some fluorescent markers to a diaminobenzidine product. J Histochem Cytochem 36(5):555–559

    Article  CAS  PubMed  Google Scholar 

  16. Deerinck TJ, Martone ME, Lev-Ram V et al (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J Cell Biol 126(4):901–910

    Article  CAS  PubMed  Google Scholar 

  17. Denker A, Rizzoli SO (2010) Synaptic vesicle pools: an update. Front Syn Neurosci 2:135. doi:10.3389/fnsyn.2010.00135

    Google Scholar 

  18. Opazo F, Rizzoli SO (2010) Studying synaptic vesicle pools using photoconversion of styryl dyes. J Vis Exp 36. http://www.jove.com/details.php?id=1790. doi:10.3791/1790

  19. Smith JE, Reese TS (1980) Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J Exp Biol 89:19–29

    CAS  PubMed  Google Scholar 

  20. Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J et al (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2(11):857–862

    Article  CAS  PubMed  Google Scholar 

  21. Monosov EZ, Wenzel TJ, Luers GH et al (1996) Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J Histochem Cytochem 44(6):581–589

    Article  CAS  PubMed  Google Scholar 

  22. Denker A, Krohnert K, Rizzoli SO (2009) Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction. J Physiol 587(Pt 12):2919–2926

    Article  CAS  PubMed  Google Scholar 

  23. Denker A, Bethani I, Krohnert K et al (2011) A small pool of vesicles maintains synaptic activity in vivo. Proc Natl Acad Sci U S A 108(41):17177–17182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Harata N, Ryan TA, Smith SJ et al (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc Natl Acad Sci U S A 98(22):12748–12753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303(5666):2037–2039

    Article  CAS  PubMed  Google Scholar 

  26. de Lange RP, de Roos AD, Borst JG (2003) Two modes of vesicle recycling in the rat calyx of Held. J Neurosci 23(31):10164–10173

    PubMed  Google Scholar 

  27. Darcy KJ, Staras K, Collinson LM et al (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321

    Article  CAS  PubMed  Google Scholar 

  28. Richards DA, Guatimosim C, Rizzoli SO et al (2003) Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39(3):529–541

    Article  CAS  PubMed  Google Scholar 

  29. Hoopmann P, Punge A, Barysch SV et al (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107(44):19055–19060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24(1):95–99

    Article  CAS  PubMed  Google Scholar 

  31. Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567):503–507

    Article  CAS  PubMed  Google Scholar 

  32. Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1):25–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Denker, A., Rizzoli, S.O. (2014). Photooxidation Microscopy: Bridging the Gap Between Fluorescence and Electron Microscopy. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics