Skip to main content

In Vitro Analysis of RNA Degradation Catalyzed by Deadenylase Enzymes

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

In this chapter, we describe a method for purification and analysis of the enzymatic activity of deadenylase enzymes. Nearly all eukaryotic messenger RNAs are modified at the 3′ end by the addition of an adenosine polymer: the poly-adenosine tail. The poly(A) tail plays a central role in protein expression and mRNA fate. The poly(A) tail promotes translation of the mRNA. Shortening of the poly(A) tail, referred to as deadenylation, reduces protein synthesis and initiates destruction of the mRNA. A specialized class of exoribonucleases, called deadenylase enzymes, carries out this process. Deadenylases are found throughout eukarya, but their functions remain largely unexplored. We present a detailed protocol to analyze deadenylase activity in vitro. First, recombinant deadenylase enzyme is over-expressed and purified from bacteria. Next, labeled RNA substrate is prepared. Deadenylation reactions are performed, and reaction products are analyzed by denaturing gel electrophoresis. Reaction rates are then determined quantitatively. Crucial controls and experimental parameters are described along with practical tips that promote success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63(2):405–445

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wahle E, Keller W (1992) The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61:419–440

    Article  CAS  PubMed  Google Scholar 

  3. Goldstrohm AC, Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9(4):337–344

    Article  CAS  PubMed  Google Scholar 

  4. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8(2):113–126

    Article  CAS  PubMed  Google Scholar 

  5. Astrom J, Astrom A, Virtanen A (1992) Properties of a HeLa cell 3′ exonuclease specific for degrading poly(A) tails of mammalian mRNA. J Biol Chem 267(25):18154–18159

    CAS  PubMed  Google Scholar 

  6. Astrom J, Astrom A, Virtanen A (1991) In vitro deadenylation of mammalian mRNA by a HeLa cell 3′ exonuclease. EMBO J 10(10):3067–3071

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Lowell JE, Rudner DZ, Sachs AB (1992) 3′-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev 6(11):2088–2099

    Article  CAS  PubMed  Google Scholar 

  8. Thore S, Mauxion F, Seraphin B et al (2003) X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep 4(12):1150–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29(5):1017–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dlakic M (2000) Functionally unrelated signalling proteins contain a fold similar to Mg2 + -dependent endonucleases. Trends Biochem Sci 25(6):272–273

    Article  CAS  PubMed  Google Scholar 

  11. Dupressoir A, Morel AP, Barbot W et al (2001) Identification of four families of yCCR4- and Mg2 + -dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics 2:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tucker M, Valencia-Sanchez MA, Staples RR et al (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104(3):377–386

    Article  CAS  PubMed  Google Scholar 

  13. Tucker M, Staples RR, Valencia-Sanchez MA et al (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21(6):1427–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wagner E, Clement SL, Lykke-Andersen J (2007) An unconventional human Ccr4-Caf1 deadenylase complex in nuclear cajal bodies. Mol Cell Biol 27(5):1686–1695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen J, Chiang YC, Denis CL (2002) CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21(6):1414–1426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Korner CG, Wahle E (1997) Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J Biol Chem 272(16):10448–10456

    Article  CAS  PubMed  Google Scholar 

  17. Martinez J, Ren YG, Thuresson AC et al (2000) A 54-kDa fragment of the Poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting Poly(A)-specific 3′ exonuclease. J Biol Chem 275(31):24222–24230

    Article  CAS  PubMed  Google Scholar 

  18. Viswanathan P, Chen J, Chiang YC et al (2003) Identification of multiple RNA features that influence CCR4 deadenylation activity. J Biol Chem 278(17):14949–14955

    Article  CAS  PubMed  Google Scholar 

  19. Fabian MR, Mathonnet G, Sundermeier T et al (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35(6):868–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Beilharz TH, Preiss T (2007) Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13(7):982–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Grigull J, Mnaimneh S, Pootoolal J et al (2004) Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24(12):5534–5547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lackner DH, Beilharz TH, Marguerat S et al (2007) A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26(1):145–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Meijer HA, Bushell M, Hill K et al (2007) A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res 35(19):e132

    Article  PubMed Central  PubMed  Google Scholar 

  24. Eulalio A, Huntzinger E, Nishihara T et al (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Goldstrohm AC, Hook BA, Seay DJ et al (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13(6):533–539

    Article  CAS  PubMed  Google Scholar 

  26. Hook BA, Goldstrohm AC, Seay DJ et al (2007) Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem 282(21):15430–15438

    Article  CAS  PubMed  Google Scholar 

  27. Goldstrohm AC, Hook BA, Wickens M (2008) Regulated deadenylation in vitro. Methods Enzymol 448:77–106

    Article  CAS  PubMed  Google Scholar 

  28. Goldstrohm AC, Seay DJ, Hook BA et al (2007) PUF protein-mediated deadenylation is catalyzed by Ccr4p. J Biol Chem 282(1):109–114

    Article  CAS  PubMed  Google Scholar 

  29. van Etten J, Schagat TL, Hrit J et al (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 287(43):36370–36383

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rio DC, Ares M Jr, Hannon GJ et al (2011) RNA: a labratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgements

We thank Nathan Blewett, Chase Weidmann, Dr. Trista Schagat, and Dr. Brad Hook for help in developing these methods. Nathan Raynard is supported by the Michigan Predoctoral Training Program in Genetics through NIH National Research Service Award 5T32GM007544-33. Aaron Goldstrohm was supported by a Research Scholar Grant RSG-13-080-01-RMC from the American Cancer Society. This work was also supported by a grant from the Edward Mallinckrodt Jr. Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron C. Goldstrohm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hrit, J., Raynard, N., Van Etten, J., Sankar, K., Petterson, A., Goldstrohm, A.C. (2014). In Vitro Analysis of RNA Degradation Catalyzed by Deadenylase Enzymes. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics