Skip to main content

X-Ray Crystallographic Studies of Metalloproteins

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedel G (1913) Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. CR Hebd Acad Sci 157:1533–1536

    Google Scholar 

  2. Kronig R d L, Kramers HA (1928) Zur Theorie der absorption und dispersion in den Röntgenspektren. Z Phys 48:174–179

    Article  CAS  Google Scholar 

  3. Bijvoet JM (1949) Phase determination in direct Fourier synthesis of crystal structures. P K Ned Akad Wetensc 52:313–314

    CAS  Google Scholar 

  4. Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58

    Article  CAS  PubMed  Google Scholar 

  5. Ramakrishnan V, Biou V (1997) Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Method Enzymol 276:538–557

    Article  CAS  Google Scholar 

  6. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D55:849–861

    CAS  Google Scholar 

  7. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Harker D (1956) The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Crystallogr 9:1–9

    Article  CAS  Google Scholar 

  9. Patterson AL (1934) A Fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev 46:372–376

    Article  CAS  Google Scholar 

  10. Karle J, Hauptman H (1956) A theory of phase determination for the 4 types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22. Acta Crystallogr 9:635–651

    Article  CAS  Google Scholar 

  11. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D58:1772–1779

    CAS  Google Scholar 

  12. Roth M, Carpentier P, Kaïkati O et al (2002) FIP: a highly automated beamline for multiwavelength anomalous diffraction experiments. Acta Crystallogr D58:805–814

    CAS  Google Scholar 

  13. De Sanctis D, Beteva A, Caserotto H (2012) ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J Synchrotron Radiat 19:455–461

    Article  PubMed  Google Scholar 

  14. Ohana J, Jacquamet L, Joly J et al (2004) CATS: a cryogenic automated transfer system installed on the beamline FIP at ESRF. J Appl Crystallogr 37:72–77

    Article  CAS  Google Scholar 

  15. Leonard GA, Solé A, Beteva A et al (2009) Online collection and analysis of X-ray fluorescence spectra on the macromolecular crystallography beamlines of the ESRF. J Appl Crystallogr 42:333–335

    Article  CAS  Google Scholar 

  16. Ronda L, Bruno S, Bettati S et al (2011) Protein crystal microspectrophotometry. Biochim Biophys Acta 1814:734–741

    Article  CAS  PubMed  Google Scholar 

  17. McGeehan JE, Bourgeois D, Royant A et al (2011) Raman-assisted crystallography of biomolecules at the synchrotron: instrumentation, methods and applications. Biochim Biophys Acta 1814:750–759

    Article  CAS  PubMed  Google Scholar 

  18. Vernède X, Fontecilla-Camps JC (1999) A method to stabilize reduced and or gas-treated protein crystals by flash-cooling under a controlled atmosphere. J Appl Crystallogr 32:505–509

    Article  Google Scholar 

  19. Evans G, Pettifer RF (2001) CHOOCH: a program for deriving anomalous scattering factors from X-ray fluorescence spectra. J Appl Crystallogr 34:82–86

    Article  CAS  Google Scholar 

  20. Zeldin OB, Gerstel M, Garman EF (2013) Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. J Synchrotron Radiat 20:49–57

    Article  CAS  PubMed  Google Scholar 

  21. Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D67:235–242

    Google Scholar 

  23. Adams PD, Afonine PV, Bunkóczy G et al (2011) The Phenix software for automated determination of macromolecular structures. Methods 55:94–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Darnault C, Volbeda A, Kim EJ et al (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279

    Article  CAS  PubMed  Google Scholar 

  25. Meharenna YT, Doukov T, Li H et al (2010) Crystallographic and single-crystal spectral analysis of the peroxidase ferryl intermediate. Biochemistry 49:2984–2986

    Article  CAS  PubMed  Google Scholar 

  26. Antonyuk SV, Hough MA (2011) Monitoring and validating active site redox states in protein crystals. Biochim Biophys Acta 1814:778–784

    Article  CAS  PubMed  Google Scholar 

  27. Merlino A, Fuchs MR, Pica A et al (2013) Selective X-ray-induced NO photodissociation in haemoglobin crystals: evidence from a Raman-assisted crystallographic study. Acta Crystallogr D69:137–140

    Google Scholar 

  28. Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc 17:43–57

    CAS  Google Scholar 

  29. Kabsch W (2010) XDS. Acta Crystallogr D66:125–132

    Google Scholar 

  30. Hendrickson WA, Lattman EE (1970) Representation of phase probability distributions for simplified combination of independent phase information. Acta Crystallogr B26:136–143

    Article  Google Scholar 

  31. Chang C-S, Weeks CM, Miller S et al (1997) Incorporating tangent refinement in the Shake-and-Bake formalism. Acta Crystallogr A53:436–444

    Article  CAS  Google Scholar 

  32. Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A42:140–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by institutional funding from the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and the Centre National de la Recherche Scientifique (CNRS). The author wishes to thank David Cobessi and Jean-Luc Ferrer of the Synchrotron Group of the IBS for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Volbeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Volbeda, A. (2014). X-Ray Crystallographic Studies of Metalloproteins. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics