Skip to main content

Energy-Directed RNA Structure Prediction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

In this chapter we present the classic dynamic programming algorithms for RNA structure prediction by energy minimization, as well as variations of this approach that allow to compute suboptimal foldings, or even the partition function over all possible secondary structures. The latter are essential in order to deal with the inaccuracy of minimum free energy (MFE) structure prediction, and can be used, for example, to derive reliability measures that assign a confidence value to all or part of a predicted structure. In addition, we discuss recently proposed alternatives to the MFE criterion such as the use of maximum expected accuracy (MEA) or centroid structures. The dynamic programming algorithms implicitly assume that the RNA molecule is in thermodynamic equilibrium. However, especially for long RNAs, this need not be the case. In the last section we therefore discuss approaches for predicting RNA folding kinetics and co-transcriptional folding.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nussinov R, Piecznik G, Griggs JR, Kleitman DJ (1978) Algorithms for loop matching. SIAM J Appl Math 35(1):68–82

    Article  Google Scholar 

  2. Bompfünewerer AF, Backofen R, Bernhart SH, Hertel J, Hofacker IL, Stadler PF, Will S (2008) Variations on RNA folding and alignment: Lessons from Benasque. J Math Biol 56:119–144

    Google Scholar 

  3. Hofacker IL, Stadler PF (2006) Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22(10):1172–1176

    Article  CAS  PubMed  Google Scholar 

  4. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures (the Vienna RNA Package). Monatsh Chem 125(2):167–188

    Article  CAS  Google Scholar 

  5. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066

    Article  CAS  PubMed  Google Scholar 

  6. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474

    Article  PubMed Central  PubMed  Google Scholar 

  7. Mathews DH, Sabina J, Zuker M, Turner H (1999) Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  8. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Doshi K, Cannone J, Cobaugh C, Gutell R (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5(1):105

    Article  PubMed Central  PubMed  Google Scholar 

  10. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  CAS  PubMed  Google Scholar 

  11. Zuker M, Jacobson AB (1995) “Well-determined” regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nuclic Acids Res 23:2791–2798

    Article  CAS  Google Scholar 

  12. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244(4900):48–52

    Article  CAS  PubMed  Google Scholar 

  13. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2):145–165

    Article  CAS  PubMed  Google Scholar 

  14. Waterman MS, Byers TH (1985) A dynamic programming algorithm to find all solutions in a neighborhood of the optimum. Math Biosci 77:179–188

    Article  Google Scholar 

  15. Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002) Barrier trees of degenerate landscapes. Z Phys Chem 216:155–173

    Article  CAS  Google Scholar 

  16. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280– 7301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mathews DH (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10(8):1178–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14):e90–e98

    Article  CAS  PubMed  Google Scholar 

  19. Kiryu H, Kin T, Asai K (2007) Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Bioinformatics 23(4):434–441

    Article  CAS  PubMed  Google Scholar 

  20. Flamm C, Hofacker IL (2008) Beyond energy minimization: Approaches to the kinetic folding of RNA. Monatsh f Chemie 139(4):447–457

    Article  CAS  Google Scholar 

  21. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci USA 97(12):6515–6520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Flamm C, Fontana W, Hofacker IL, Schuster P (2000) RNA folding kinetics at elementary step resolution. RNA 6:325–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wolfinger MT, Andreas Svrcek-Seiler W, Flamm C, Hofacker IL, Stadler PF (2004) Efficient folding dynamics of RNA secondary structures. J Phys A Math Gen 37: 4731–4741

    Article  CAS  Google Scholar 

  24. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nuclic Acids Res 36:W70–W74

    Article  CAS  Google Scholar 

  25. Lorenz R, Flamm C, Hofacker IL (2009) 2D projections of RNA folding landscapes. In: Grosse I, Neumann S, Posch S, Schreiber F, Stadler PF, (eds) German conference on bioinformatics 2009, vol 157 of Lecture notes in informatics, pp 11–20, Bonn. Gesellschaft f Informatik

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hofacker, I.L. (2014). Energy-Directed RNA Structure Prediction. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics