Skip to main content

Protein Structural Dynamics Revealed by Site-Directed Spin Labeling and Multifrequency EPR

  • Protocol
  • First Online:
Protein Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

Multifrequency electron paramagnetic resonance (EPR) of spin-labeled protein is a powerful spectroscopic technique to study protein dynamics on the rotational correlation time scale from 100 ps to 100 ns. Nitroxide spin probe, attached to cysteine residue, reports on local topology within the labeling site, dynamics of protein domains reorientation, and protein global tumbling in solution. Due to spin probe’s magnetic tensors anisotropy, its mobility is directly reflected by the EPR lineshape. The multifrequency approach significantly decreases ambiguity of EPR spectra interpretation. The approach, described in this chapter, provides a practical guideline that can be followed to carry out the experiments and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berliner LJ (ed) (1976) Spin labeling theory and applications. Academic, New York

    Google Scholar 

  2. Van SP, Birrell GB, Griffith OH (1974) Rapid anisotropic motion of spin labels. Models for motion averaging of the ESR parameters. J Magn Res 15:444–459

    CAS  Google Scholar 

  3. Freed JH (1976) Theory of slow tumbling ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labeling: theory and applications. Academic, New York, pp 53–132

    Google Scholar 

  4. Nesmelov YE, Karim C, Song L, Fajer PG, Thomas DD (2007) Rotational dynamics of phospholamban determined by multifrequency electron paramagnetic resonance. Biophys J 93:2805–2812

    Article  PubMed  CAS  Google Scholar 

  5. Budil D, Lee S, Saxena S, Freed J (1996) Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J Magn Reson A120:155–189

    Google Scholar 

  6. Schneider DJ, Freed JH (1989) Calculating slow motional magnetic resonance spectra: a user's guide. In: Berliner LJ (ed) Biological magnetic resonance, vol 8. Plenum Publishing Corporation, New York, pp 1–76

    Google Scholar 

  7. Polimeno A, Freed JH (1995) Slow motional ESR in complex fluids: the slowly relaxing local structure model of solvent cage effects. J Phys Chem 99:10995–11006

    Article  CAS  Google Scholar 

  8. Johnson KA, Taylor EW (1978) Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism. Biochemistry 17(17):3432–3442

    Article  PubMed  CAS  Google Scholar 

  9. Bagshaw CR, Trentham DR (1974) The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J 141(2):331–349

    PubMed  CAS  Google Scholar 

  10. Seidel J, Chopek M, Gergely J (1970) Effect of nucleotides and pyrophosphate on spin labels bound to S1 thiol groups of myosin. Biochemistry 9(16):3265–3272

    Article  PubMed  CAS  Google Scholar 

  11. Barnett VA, Thomas DD (1987) Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis. Biochemistry 26(1):314–323

    Article  PubMed  CAS  Google Scholar 

  12. Ostap EM, White HD, Thomas DD (1993) Transient detection of spin-labeled myosin subfragment 1 conformational states during ATP hydrolysis. Biochemistry 32(26):6712–6720

    Article  PubMed  CAS  Google Scholar 

  13. Agafonov RV, Nesmelov YE, Titus MA, Thomas DD (2008) Muscle and nonmuscle myosins probed by a spin label at equivalent sites in the force-generating domain. Proc Natl Acad Sci U S A 105(36):13397–13402

    Article  PubMed  CAS  Google Scholar 

  14. Nesmelov YE, Agafonov RV, Burr AR, Weber RT, Thomas DD (2008) Structure and dynamics of the force-generating domain of myosin probed by multifrequency electron paramagnetic resonance. Biophys J 95(1):247–256

    Article  PubMed  CAS  Google Scholar 

  15. Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275(49):38494–38499

    Article  PubMed  CAS  Google Scholar 

  16. Gulick AM, Bauer CB, Thoden JB, Rayment I (1997) X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36(39):11619–11628

    Article  PubMed  CAS  Google Scholar 

  17. Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34(28):8960–8972

    Article  PubMed  CAS  Google Scholar 

  18. Houdusse A, Sweeney HL (2001) Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol 11(2):182–194

    Article  PubMed  CAS  Google Scholar 

  19. Reddy LG, Jones LR, Thomas DD (1999) Depolymerization of phospholamban in the presence of calcium pump: a fluorescence energy transfer study. Biochemistry 38(13):3954–3962

    Article  PubMed  CAS  Google Scholar 

  20. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4(7):566–577

    Article  PubMed  CAS  Google Scholar 

  21. Zamoon J, Mascioni A, Thomas DD, Veglia G (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85(4):2589–2598

    Article  PubMed  CAS  Google Scholar 

  22. Mascioni A, Karim C, Zamoon J, Thomas DD, Veglia G (2002) Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban. J Am Chem Soc 124(32):9392–9393

    Article  PubMed  CAS  Google Scholar 

  23. Traaseth NJ, Buffy JJ, Zamoon J, Veglia G (2006) Structural dynamics and topology of phospholamban in oriented lipid bilayers using multidimensional solid-state NMR. Biochemistry 45(46):13827–13834

    Article  PubMed  CAS  Google Scholar 

  24. Karim CB, Kirby TL, Zhang Z, Nesmelov Y, Thomas DD (2004) Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proc Natl Acad Sci U S A 101(40):14437–14442

    Article  PubMed  CAS  Google Scholar 

  25. Kirby TL, Karim CB, Thomas DD (2004) Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Biochemistry 43(19):5842–5852

    Article  PubMed  CAS  Google Scholar 

  26. James P, Inui M, Tada M, Chiesi M, Carafoli E (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342(6245):90–92

    Article  PubMed  CAS  Google Scholar 

  27. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH (1994) Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem 269(37):22929–22932

    PubMed  CAS  Google Scholar 

  28. Toyoshima C, Asahi M, Sugita Y, Khanna R, Tsuda T, MacLennan DH (2003) Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc Natl Acad Sci U S A 100(2):467–472

    Article  PubMed  CAS  Google Scholar 

  29. Hutter MC, Krebs J, Meiler J, Griesinger C, Carafoli E, Helms V (2002) A structural model of the complex formed by phospholamban and the calcium pump of sarcoplasmic reticulum obtained by molecular mechanics. ChemBioChem 3(12):1200–1208

    Article  PubMed  CAS  Google Scholar 

  30. Zamoon J, Nitu F, Karim C, Thomas DD, Veglia G (2005) Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation. Proc Natl Acad Sci U S A 102(13):4747–4752

    Article  PubMed  CAS  Google Scholar 

  31. Karim CB, Zhang Z, Howard EC, Torgersen KD, Thomas DD (2006) Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA. J Mol Biol 358(4):1032–1040

    Article  PubMed  CAS  Google Scholar 

  32. Metcalfe EE, Zamoon J, Thomas DD, Veglia G (2004) (1)H/(15)N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamban reconstituted in dodecylphosphocholine micelles. Biophys J 87(2):1205–1214

    Article  PubMed  CAS  Google Scholar 

  33. Karim CB, Zhang Z, Thomas DD (2007) Synthesis of TOAC-spin-labeled proteins and reconstitution in lipid membranes. Nat Protoc 2:42–49

    Article  PubMed  CAS  Google Scholar 

  34. Earle KA, Budil DE, Freed JH (1993) 250-GHz EPR of nitroxides in the slow-motional regime: models of rotational diffusion. J Phys Chem 97:13289–13297

    Article  CAS  Google Scholar 

  35. Ernst RR, B G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  36. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178 (1):42–55. doi:S1090-7807(05)00289-2 [pii] 10.1016/j.jmr.2005.08.013

    Google Scholar 

  37. Birmachu W, Thomas DD (1990) Rotational dynamics of the Ca-ATPase in sarcoplasmic reticulum studied by time-resolved phosphorescence anisotropy. Biochemistry 29(16):3904–3914

    Article  PubMed  CAS  Google Scholar 

  38. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  39. Hanson P, Anderson DJ, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1998) Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol Phys 95(5):957–966

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AR53562, AR59621. NLSL and NLSL-SRLS software was kindly provided by Dr. Z. Liang and Dr. J.H. Freed (Cornell University).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Nesmelov, Y.E. (2014). Protein Structural Dynamics Revealed by Site-Directed Spin Labeling and Multifrequency EPR. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics