Skip to main content

Development of Cell-Type-Specific Viral Vectors to Tease Apart the Neural Circuitry that Contributes to Drug Addiction

  • Protocol
  • First Online:
Viral Vector Approaches in Neurobiology and Brain Diseases

Part of the book series: Neuromethods ((NM,volume 82))

  • 1372 Accesses

Abstract

Although our understanding of the mechanisms that underlie drug addiction have advanced significantly over the past few decades, the lack of efficacious treatments for this debilitating disorder suggest that there is much work still to be done to clarify the role of specific cells and circuits in the process that govern addiction. In recent years, new technologies have been developed that are now allowing researchers to express transgenes in selective cell populations in the brain as well as to modulate the activity of these cell populations selectively. This chapter provides a detailed overview of how cell-type-specific viral vectors can be developed and used in order to parse out the neural circuits that underlie addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalivas PW (2002) Neurocircuitry of addiction. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott, Williams, & Wilkins, Philadelphia, PA, pp 1357–1366

    Google Scholar 

  2. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11): 844–858

    Article  PubMed  CAS  Google Scholar 

  3. Nestler EJ (2005) Is there a common molecular pathway for addiction. Nat Neurosci 8(11):1445–1449

    Article  PubMed  CAS  Google Scholar 

  4. Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    Article  PubMed  CAS  Google Scholar 

  5. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12(11):623–637

    Article  PubMed  CAS  Google Scholar 

  6. Deller T, Frotscher M (1997) Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 53(6):687–727

    Article  PubMed  CAS  Google Scholar 

  7. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315

    Article  PubMed  CAS  Google Scholar 

  8. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168

    Article  PubMed  Google Scholar 

  9. Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14:22–24

    Article  PubMed  CAS  Google Scholar 

  10. Kreitzer AC, Berke JD (2011) Investigating striatal function through cell-type specific manipulations. Neuroscience 198:19–26

    Article  PubMed  CAS  Google Scholar 

  11. Lobo MK, Covington HE III, Chaudhury D, Friedman AK, Sun H, Damez-Wemo D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  PubMed  CAS  Google Scholar 

  12. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475(7356):377–380

    Article  PubMed  CAS  Google Scholar 

  13. Pastrana E (2011) Rewiring cellular networks. Nat Methods 8(2):108–109

    Article  PubMed  CAS  Google Scholar 

  14. Neve RL, Neve KA, Nestler EJ, Carlezon WA (2005) Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 39(3): 381–391

    Article  PubMed  CAS  Google Scholar 

  15. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  PubMed  CAS  Google Scholar 

  16. Funston GM, Kallioinen SE, de Felipe P, Ryan MD, Iggo RD (2008) Expression of heterologous genes in oncolytic adenoviruses using picornaviral 2A sequences that trigger ribosome skipping. J Gen Virol 89:389–396

    Article  PubMed  CAS  Google Scholar 

  17. Barot SK, Ferguson SM, Neumaier JF (2007) 5-HT1B receptors in nucleus accumbens efferents enhance both rewarding and aversive effects of cocaine. Eur J Neurosci 25(10): 3125–3131

    Article  PubMed  Google Scholar 

  18. Olmstead MCC (2010) Animal models of drug addiction. New York: Humana Press

    Google Scholar 

  19. Ferguson SM, Neumaier JF (2012) Grateful DREADDs: engineered receptors reveal how neural circuits regulate behavior. Neuropsychopharmacology 37(1):296–297

    Article  PubMed  Google Scholar 

  20. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39

    Article  PubMed  CAS  Google Scholar 

  21. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  PubMed  CAS  Google Scholar 

  22. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577–581

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ferguson, S.M., Neumaier, J.F. (2014). Development of Cell-Type-Specific Viral Vectors to Tease Apart the Neural Circuitry that Contributes to Drug Addiction. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics