Skip to main content

Encapsulation of Cells in Alginate Gels

  • Protocol
  • First Online:
Book cover Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

Cell microencapsulation is based on the immobilization of cells for continuous release of therapeutics. This approach has been tested in the treatment of many diseases and several clinical trials have been performed. Factors such as the choice of cells to be encapsulated, the biomaterial used, and the procedure for carrying out the capsules are important issues when implementing this technology.

This book chapter makes a comprehensive description of alginate, the most frequently employed biomaterial, passing by its structure, the extraction and treatment, and finishing with the process of gelation. It also describes the various modifications that can be carried out to allow the interaction between the alginate and the integrin receptors of encapsulated cells. The main microencapsulation technologies are presented as well as how 100 μm alginate–Poly-l-Lysine–alginate microcapsules can be fabricated with Flow-focusing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang TM (1964) Semipermeable microcapsules. Science 146:524–525

    Article  PubMed  CAS  Google Scholar 

  2. Lim F, Sun AM (1980) Microencapsulated islets as a bioartificial endocrine pancreas. Science 210:908–910

    Article  PubMed  CAS  Google Scholar 

  3. Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacìk I, James Shapiro AM, Pedráz JL (2003) Cell encapsulation: promise and progress. Nat Med 9:104–107

    Article  PubMed  CAS  Google Scholar 

  4. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  PubMed  CAS  Google Scholar 

  5. Smidsrod O, Skjak-Bræk G (1990) Alginate as immobilization matrix for cells. Trend Biotechnol 8:71–78

    Article  CAS  Google Scholar 

  6. Clark DE, Green HC (1936) Alginic acid and process of making same. US Patent 2036922

    Google Scholar 

  7. Orive G, Ponce S, Hernandez RM, Gascon AR, Igartua M, Pedraz JL (2002) Biocompatibility of microcapsules for cell immobi- lization elaborated with different type of alginates. Biomaterials 23:3825–3831

    Article  PubMed  CAS  Google Scholar 

  8. Orive G, Tamb SK, Pedraz JL, Halle JP (2006) Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy. Biomaterials 27:3691–3700

    Article  PubMed  CAS  Google Scholar 

  9. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    Article  PubMed  CAS  Google Scholar 

  10. Kong HJ, Lee KY, Mooney DJ (2002) Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer 43:6239–6246

    Article  CAS  Google Scholar 

  11. McHugh DJ (1987) Production and utilization of products from commercial seaweeds. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  12. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  13. Donati I, Holtan S, Morch YA et al (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6:1031–1040

    Article  PubMed  CAS  Google Scholar 

  14. Morch YA, Donati I, Strand BL et al (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  PubMed  CAS  Google Scholar 

  15. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  PubMed  CAS  Google Scholar 

  16. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  PubMed  CAS  Google Scholar 

  17. Acarregui A, Murua A, Pedráz JL, Orive G, Hernández RM (2012) A perspective on bioactive cell microencapsulation. BioDrugs 26(5):283–301. doi:10.2165/11632640-000000000-00000

    PubMed  CAS  Google Scholar 

  18. Kong HJ, Boontheekul T, Mooney DJ (2006) Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proc Natl Acad Sci USA 103:18534–18539

    Article  PubMed  CAS  Google Scholar 

  19. Huebsch ND, Mooney DJ (2007) Fluorescent resonance energy transfer: a tool for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 28:2424–2437

    Article  PubMed  CAS  Google Scholar 

  20. Rowley JA et al (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  PubMed  CAS  Google Scholar 

  21. Orive G, De Castro M, Kong HJ, Hernández RM, Ponce S, Mooney DJ, Pedráz JL (2009) Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 135:203–210

    Article  PubMed  CAS  Google Scholar 

  22. Alsberg E, Anderson KW, Albeiruti A et al (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029

    Article  PubMed  CAS  Google Scholar 

  23. Dhoot NO, Tobias CA, Fischer I et al (2004) Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 71:191–200

    Article  PubMed  Google Scholar 

  24. Koo LY et al (2002) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433

    PubMed  CAS  Google Scholar 

  25. Chen CS et al (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  26. De Vos P, Andersson A, Tam SK, Faas MM, Hallé JP (2006) Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol Endocr Metabol Agents Med Chem 6:139–153

    Article  Google Scholar 

  27. Zhoua H, Xu HH (2011) The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32:7503–7513

    Article  Google Scholar 

  28. Whelehan M, Marison IW (2011) Microencapsulation using vibrating technology. J Microencapsul 28(8):669–688

    Article  PubMed  CAS  Google Scholar 

  29. Serp D, Cantana E, Heinzen C, Von Stockar U, Marison IW (2000) Characterization of an encapsulation device for the production of mono-disperse alginate beads for cell immobilization. Biotechnol Bioeng 70:41–53

    Article  PubMed  CAS  Google Scholar 

  30. Koch S, Schwinger C, Kressler J, Heinzen CH, Rainov NG (2003) Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J Microencapsul 20(3):303–316

    PubMed  CAS  Google Scholar 

  31. Prusse U, Dalluhn J, Breford J, Vorlop KD (2000) Production of spherical particles by jet cutting. Chemie Ingenieur Technik 72:852–858

    Article  Google Scholar 

  32. Gañan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501

    Article  PubMed  Google Scholar 

  33. Santos E, Orive G, Calvo A, Catena R, Fernández-Robredo P, García Layana A, Hernández RM, Pedráz JL (2012) Optimization of 100 μm alginate-poly-l-lysine-alginate capsules for intravitreous administration. J Control Release 158:443–450

    Article  PubMed  CAS  Google Scholar 

  34. Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in Gas streams. Phys Rev Lett 80:285

    Article  Google Scholar 

  35. Orive G, Hernández RM, Gascón AR, Igartua M, Pedraz JL (2003) Survival of different cell lines in alginate-agarose microcapsules. Eur J Pharm Sci 18(1):23–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sánchez, P., Hernández, R.M., Pedraz, J.L., Orive, G. (2013). Encapsulation of Cells in Alginate Gels. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics