Skip to main content

Graphene–PAMAM Dendrimer–Gold Nanoparticle Composite for Electrochemical DNA Hybridization Detection

  • Protocol
  • First Online:
Nucleic Acid Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1039))

Abstract

Graphene oxide is chemically functionalized using planar structured first generation polyamidoamine dendrimer (G1PAMAM) to form graphene core GG1PAMAM. The monolayer of GG1PAMAM is anchored on the 3-mercapto propionic acid monolayer pre-immobilized onto a gold transducer. The GG1PAMAM is decorated using gold nanoparticles for the covalent attachment of single-stranded DNA through simple gold-thiol chemistry. The single- and double-stranded DNAs are discriminated electrochemically in the presence of redox probe K3[Fe(CN)6]. Double-stranded-specific intercalator methylene blue is used to enhance the lower detection limit. The use of linear and planar G1PAMAM along with the graphene core has enhanced the detection limit 100 times higher than the G1PAMAM with the conventional ethylene core. This chapter presents the details of GG1PAMAM preparation and application to DNA sensing by electrochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tainaka K, Sakaguchi R, Hayashi H et al (2010) Design strategies of fluorescent biosensors based on biological macromolecular receptors. Sensors 10:1355–1376

    Article  PubMed  CAS  Google Scholar 

  2. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  PubMed  CAS  Google Scholar 

  3. Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2:31–38

    Article  PubMed  CAS  Google Scholar 

  4. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25

    Article  PubMed  CAS  Google Scholar 

  5. Cagnin S, Caraballo M, Guiducci C et al (2009) Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors 9:3122–3148

    Article  PubMed  CAS  Google Scholar 

  6. Ozsoz MS (2012) Electrochemical DNA biosensors. Stanford Publishing, Singapore

    Book  Google Scholar 

  7. Geim AK, Novoselov KS (2007) The rise of graphene nature materials. Nat Mater 6:183–191

    Article  PubMed  CAS  Google Scholar 

  8. Zhu Y, Murali S, Cai WW et al (2010) Graphene and graphene oxide—synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  PubMed  CAS  Google Scholar 

  9. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  10. Eda G, Chhowalla M (2010) Current trends in shrinking the channel length of organic transistors down to the nanoscale. Adv Mater 22:20–32

    Article  Google Scholar 

  11. Loh KP, Bao QL, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  PubMed  CAS  Google Scholar 

  12. Wu J, Agrawal M, Becerril HA et al (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48

    Article  PubMed  CAS  Google Scholar 

  13. Jang H, Kim YK, Kwon HM et al (2010) A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angew Chem Int Ed 49:5703–5707

    Article  CAS  Google Scholar 

  14. Wang Y, Li ZH, Hu DH et al (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    Article  PubMed  CAS  Google Scholar 

  15. Wang XH, Wang CY, Qu KG et al (2010) Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Adv Funct Mater 20:3967–3971

    Article  CAS  Google Scholar 

  16. Shi Y, Huang WT, Luo HQ, Li NB (2011) A label-free DNA reduced graphene based fluorescent sensor for highly sensitive and selective detection of hemin. Chem Commun 47:4676–4678

    Article  CAS  Google Scholar 

  17. Tang L, Wang AL, Loh JZ (2010) Graphene-based SELDI probe with ultrahigh exrtraction and sensitivity for DNA oligmer. J Am Chem Soc 132:10976–10977

    Article  PubMed  CAS  Google Scholar 

  18. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    Article  PubMed  CAS  Google Scholar 

  19. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  20. Hu Y, Wang K, Zhang Q, Li F (2012) Decorated graphene sheets for label free DNA impedance biosensing. Biomaterials 33:1097–1106

    Article  PubMed  CAS  Google Scholar 

  21. Huang PJJ, Liu J (2012) Molecular beacon lighting up on graphene-oxide. Anal Chem 84:4192–4198

    Article  PubMed  CAS  Google Scholar 

  22. Emilie D, Zhiyong Y, Kian PL (2011) Optimizing label-free DNA electrical detection on graphene platform. Anal Chem 83:2452–2460

    Article  Google Scholar 

  23. Shen JF, Shi M, Yan B et al (2004) Surface modification using photocrosslinkable chitosan for improving hemocompatibility. Colloids Surf B 38:47–53

    Article  Google Scholar 

  24. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–44763

    Article  PubMed  CAS  Google Scholar 

  25. Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25:2361–2366

    Article  PubMed  CAS  Google Scholar 

  26. Wang ZJ, Zhou XZ, Zhang J et al (2009) Time-domain ab initio study of nonradiative decay in a narrow graphene ribbon. J Phys Chem C 113:14067–14070

    Google Scholar 

  27. Liu Y, Yu DS, Zeng C, Miao ZC, Dai LM (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–6160

    Article  PubMed  CAS  Google Scholar 

  28. Liu ZF, Jiang LH, Galli F et al (2010) A graphene oxide streptavidin complex for biorecognition—towards affinity purification. Adv Funct Mater 20:2857–2865

    Article  CAS  Google Scholar 

  29. Jitendra SV, Sai VR, Soumyo M (2011) Dendrimers in biosensors—concept and applications. J Mater Chem 21:14367–14386

    Article  Google Scholar 

  30. Ashavani K, Saikat M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    Article  Google Scholar 

  31. Lv W, Guo M, Liang MH et al (2010) Graphene DNA hybrids—self assembly and electrochemical detection performance. J Mater Chem 20:6668–6673

    Article  CAS  Google Scholar 

  32. Zhang D, Liu X, Wang XJ (2011) Green synthesis of graphene oxide sheets decorated by silver nanoprims and their anti-bacterial properties. Inorg Biochem 105:1181–1186

    Article  CAS  Google Scholar 

  33. Yang X, Xu M, Qiu W et al (2011) Graphene uniform decorated with gold nano dots—in situ synthesis, enhanced dispersibility and applications. J Mater Chem 21:8096–8103

    Article  CAS  Google Scholar 

  34. Hu Y, Hua S, Li F et al (2011) Green synthesized gold nano particle decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing. Biosens Bioelectron 26:4355–4361

    Article  PubMed  CAS  Google Scholar 

  35. Phama TA, Choib BC, Lima KT, Jeonga YT (2011) A simple approach for immobilization of gold nano particle on graphene oxide sheets by covalent bonding. Appl Surf Sci 257:3350–3357

    Article  Google Scholar 

  36. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide—biofunctionalization and applications in biotechnology. Trends Biotechnol 5:205–212

    Article  Google Scholar 

  37. Lee B, Chen Y, Duerr F et al (2010) Modification of electronic properties of graphene with self-assembled mono layers. Nano Lett 10:2427–2432

    Article  PubMed  CAS  Google Scholar 

  38. Li W, Tan C, Lowe MA, Abruna HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270

    Article  PubMed  CAS  Google Scholar 

  39. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical biosensors. A review. Electroanalaysis 22:1027–1036

    Article  CAS  Google Scholar 

  40. Sharma R, Sharma Baik JH, Perera CJ, Strano MS (2010) Anamolously large reactivtity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405

    Article  PubMed  CAS  Google Scholar 

  41. Koehler FM, Jacobson A, Enasslin K, Stamper C, Stark WJ (2010) Selective chemical modification of graphene structures. Distinction between single and bilayer graphene. Small 6:1125–1130

    Article  PubMed  CAS  Google Scholar 

  42. Yao Y, Li Z, Moon KS, Agar J, Wong C (2011) Controlled growth of multilayer few layer and single layer graphene on metal substrates. J Phys Chem C 115:5232–5238

    Article  CAS  Google Scholar 

  43. Bohem HP, Clauss A, Fisher GO, Hofmann U (1962) Thin carbon leaves. Z Naturforsch 17b:150–153

    Google Scholar 

  44. Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139

    Article  CAS  Google Scholar 

  45. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in thin carbon films. Science 306:666–669

    Article  PubMed  CAS  Google Scholar 

  46. Shuai W, Priscilla KA, Ziqian W, Ai Ling LT (2010) High mobility printable, and solution-processed graphene electronics. Nano Lett 10:92–98

    Article  Google Scholar 

  47. Scott G, Song H, Minsheng W et al (2008) A chemical route to graphene for device applications. Nature 3:563–568

    Google Scholar 

  48. Yenny H, Valeria N, Mustafa L, Fiona M (2008) Nanotechnology. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature 3:563–568

    Google Scholar 

  49. Joshua R, Xiaojun W, Kathleen T (2010) Nucleation of epitaxial graphene on SiC (0001). ACS Nano 4:153–158

    Article  Google Scholar 

  50. Dreyer Daniel R, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  PubMed  CAS  Google Scholar 

  51. Gao Y, Chen XQ, Xu H, Zou YL (2010) Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method. Carbon 48:4475–4482

    Article  CAS  Google Scholar 

  52. Kovtyukhova NI, Ollivier PJ, Martin BR (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  53. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1340

    Article  CAS  Google Scholar 

  54. Imabayashi S, Hobara D, Kakiuchi T (1997) Selective replacement of adsorbed alkane thiols in phase-separated binary self-assembled mono layer by elactrochemical partial desorption. Langmuir 13:4502–4504

    Article  CAS  Google Scholar 

  55. Jasuji K, Linn J, Melton S, Berry V (2010) Microwave-reduced uncapped metal nano particles on graphene tuning catalytic, electrical and Raman properties. Phys Chem Lett 1:1853–1860

    Article  Google Scholar 

  56. Vinodgopal K, Neppolin B, Lightcap LV et al (2010) LettSonolytic design of graphene–Au nano composites. Simultaneous and sequential reduction of graphene oxide and Au(111). J Phys Chem 1:1987–1993

    CAS  Google Scholar 

  57. Rafaela FC, Renato SF, Lauro TK (2005) Polycrystalline gold electrode—a comparative study of pretreament procedure used for cleaning and thiol self-assembly mono layer formation. Eelectroanalysis 17:1251–1259

    Article  Google Scholar 

  58. Li NB, Kwak J (2007) A penicillamine biosensor based on tyrosinase immobilized on nano-Au/PAMAM dendrimer modified gold electrode. Electroanalysis 19:2428–2436

    Article  CAS  Google Scholar 

  59. Frens G (1973) Controlled nucleation for the regulation of particle size in monodsiperse gold suspension. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  60. Yi X, Huang-Xian J, Hong-Yuan C (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. V. Dharuman and K. Jayakumar acknowledge the Council of Scientific and Industrial Research, New Delhi, India for the financial support through project (CSIR No.03(1160)/10/EMR-II).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Jayakumar, K., Rajesh, R., Dharuman, V., Venkatesan, R. (2013). Graphene–PAMAM Dendrimer–Gold Nanoparticle Composite for Electrochemical DNA Hybridization Detection. In: Kolpashchikov, D., Gerasimova, Y. (eds) Nucleic Acid Detection. Methods in Molecular Biology, vol 1039. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-535-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-535-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-534-7

  • Online ISBN: 978-1-62703-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics