Skip to main content

The Stripe Assay: Studying Growth Preference and Axon Guidance on Binary Choice Substrates In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1018))

Abstract

Stripe assays are frequently used for studying binary growth decisions of cells and axons towards surface-bound molecules in vitro. In particular in the fields of neurodevelopment and axon guidance, stripe assays have become a routine tool. Several variants of the stripe assay have been developed since its introduction by Bonhoeffer and colleagues in 1987 (Development 101:685–696, 1987). In all variants, however, the principle is the generation of a structured binary growth substrate, consisting of two sets of cues, arranged in alternating stripes. There are two major classes of stripe assays, mainly distinguished by the source material used for stripe pattern manufacturing: membrane stripe assays, where the stripe patterns are generated with membrane fractions isolated from tissue or cells, and stripe assays with purified proteins, also called modified stripe assays. In this chapter we describe in detail the classical membrane stripe assay, the commonly used modified stripe assay employing purified proteins, and a novel stripe assay for high-affinity interacting proteins, like receptor/ligand pairs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walter J, Kern-Veits B, Huf J et al (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101:685–696

    PubMed  CAS  Google Scholar 

  2. Walter J, Henke-Fahle S, Bonhoeffer F (1987) Avoidance of posterior tectal membranes by temporal retinal axons. Development 101:909–913

    PubMed  CAS  Google Scholar 

  3. Bonhoeffer F, Huf J (1982) In vitro experiments on axon guidance demonstrating an anterior-posterior gradient on the tectum. EMBO J 1:427–431

    PubMed  CAS  Google Scholar 

  4. Drescher U, Kremoser C, Handwerker C et al (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370

    Article  PubMed  CAS  Google Scholar 

  5. Knöll B, Drescher U (2002) Ephrin-As as receptors in topographic projections. Trends Neurosci 25:145–149

    Article  PubMed  Google Scholar 

  6. McLaughlin T, O’Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    Article  PubMed  CAS  Google Scholar 

  7. Suetterlin P, Marler KM, Drescher U (2012) Axonal ephrinA/EphA interactions and the emergence of order in topographic projections. Semin Cell Dev Biol 23:1–6

    Article  PubMed  CAS  Google Scholar 

  8. Vielmetter J, Stolze B, Bonhoeffer F et al (1990) In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp Brain Res 81:283–287

    Article  PubMed  CAS  Google Scholar 

  9. Knöll B, Weinl C, Nordheim A et al (2007) Stripe assay to examine axonal guidance and cell migration. Nat Protoc 2:1216–1224

    Article  PubMed  Google Scholar 

  10. Rashid T, Upton AL, Blentic A et al (2005) Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 47:57–69

    Article  PubMed  CAS  Google Scholar 

  11. Egea J, Klein R (2007) Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 7:230–238

    Article  Google Scholar 

  12. Feldheim DA, O’Leary DD (2010) Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb Perspect Biol 2(11):a001768

    Article  PubMed  CAS  Google Scholar 

  13. Gebhardt C, Bastmeyer M, Weth F (2012) Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping. Development 139:335–345

    Article  PubMed  CAS  Google Scholar 

  14. von Philipsborn AC, Lang S, Löschinger J et al (2006) Growth cone navigation in substrate-bound ephrin gradients. Development 133:2487–2495

    Article  Google Scholar 

  15. Wizenmann A, Thanos S, von Boxberg Y et al (1993) Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: an in vitro study. Development 117:725–735

    PubMed  CAS  Google Scholar 

  16. Hübener M, Götz M, Klostermann S et al (1995) Guidance of thalamocortical axons by growth-promoting molecules in developing rat cerebral cortex. Eur J Neurosci 7:1963–1972

    Article  PubMed  Google Scholar 

  17. Stein E, Savaskan NE, Ninnemann O et al (1999) A role for the Eph ligand ephrin-A3 in entorhino-hippocampal axon targeting. J Neurosci 19:8885–8893

    PubMed  CAS  Google Scholar 

  18. Monschau B, Kremoser C, Ohta K et al (1997) Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J 16:1258–1267

    Article  PubMed  CAS  Google Scholar 

  19. Simon DK, O’Leary DD (1992) Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Neuron 9:977–989

    Article  PubMed  CAS  Google Scholar 

  20. Nakamoto M, Cheng HJ, Friedman GC et al (1996) Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86:755–766

    Article  PubMed  CAS  Google Scholar 

  21. Mann F, Ray S, Harris WA et al (2002) Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35:461–473

    Article  PubMed  CAS  Google Scholar 

  22. Knöll B, Zarbalis K, Wurst W et al (2001) A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128:895–906

    PubMed  Google Scholar 

  23. Snow DM, Lemmon V, Carrino DA et al (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109:111–130

    Article  PubMed  CAS  Google Scholar 

  24. Kao TJ, Kania A (2011) Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron 71:76–91

    Article  PubMed  CAS  Google Scholar 

  25. Bonanomi D, Chivatakarn O, Bai G et al (2012) Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 148:568–582

    Article  PubMed  CAS  Google Scholar 

  26. Forster E, Tielsch A, Saum B et al (2002) Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 99:13178–13183

    Article  PubMed  CAS  Google Scholar 

  27. Knöll B, Kretz O, Fiedler C et al (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9:195–204

    Article  PubMed  Google Scholar 

  28. Bagnard D, Lohrum M, Uziel D et al (1998) Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–5053

    PubMed  CAS  Google Scholar 

  29. Zimmer G, Schanuel SM, Bürger S et al (2010) Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. Cereb Cortex 20:2411–2422

    Article  PubMed  Google Scholar 

  30. Wang HU, Anderson DJ (1997) Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18:383–396

    Article  PubMed  CAS  Google Scholar 

  31. Cohen RI, Rottkamp DM, Maric D et al (2003) A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem 85:1262–1278

    Article  PubMed  CAS  Google Scholar 

  32. Ciossek T, Monschau B, Kremoser C et al (1998) Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur J Neurosci 10:1574–1580

    Article  PubMed  CAS  Google Scholar 

  33. Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation, DFG (grant BA1034/14-3 to M.B. and F.W.). B.K. is supported by the DFG, Schram-Foundation, Gottschalk-Foundation, and Non-Profit Hertie Foundation.

The authors thank Andrea Wizenmann for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weschenfelder, M., Weth, F., Knöll, B., Bastmeyer, M. (2013). The Stripe Assay: Studying Growth Preference and Axon Guidance on Binary Choice Substrates In Vitro. In: Zhou, R., Mei, L. (eds) Neural Development. Methods in Molecular Biology, vol 1018. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-444-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-444-9_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-443-2

  • Online ISBN: 978-1-62703-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics