Skip to main content

Gene Transfer to the Heart: Emerging Strategies for the Selection of Vectors, Delivery Techniques, and Therapeutic Targets

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy

Abstract

Heart diseases are a major cause of morbidity and mortality in contemporary society. Advances in the understanding of the molecular basis of myocardial dysfunction have placed many acquired and congenital cardiovascular diseases within the reach of gene-based therapy. Four prerequisites are required for a successful clinical application of gene therapy: (1) an effective strategy for genetic manipulation, (2) availability of vectors with enhanced myocardial tropism, (3) a clinically translatable delivery technique that will result in global or regional expression, and (4) creation of therapeutic transgenes for selected molecular targets depending on the underlying pathological state of the heart. Despite significant promise, however, several obstacles exist with gene-based therapies. These obstacles are described in detail in this chapter, along with proposed solutions. We anticipate that advances in the field will improve cardiac gene therapy in future clinical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melo LG, Pachori AS, Gnecchi M, Dzau VJ (2005) Genetic therapies for cardiovascular diseases. Trends Mol Med 11:240–250

    PubMed  CAS  Google Scholar 

  2. Quarck R, Holvoet P (2004) Gene therapy approaches for cardiovascular diseases. Curr Gene Ther 4:207–223

    PubMed  CAS  Google Scholar 

  3. Morishita R (2004) Perspective in progress of cardiovascular gene therapy. J Pharmacol Sci 95:1–8

    PubMed  CAS  Google Scholar 

  4. Quarck R, De Geest B, Stengel D, Mertens A, Lox M, Theilmeier G et al (2001) Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 103:2495–2500

    PubMed  CAS  Google Scholar 

  5. Marchand GS, Noiseux N, Tanguay J-F, Sirois MG (2002) Blockade of in vivo VEGF-mediated angiogenesis by antisense gene therapy: role of Flk-1 and Flt-1 receptors. Am J Physiol Heart Circ Physiol 282:H194–H204

    PubMed  CAS  Google Scholar 

  6. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart ­failure. Circulation 124:1537–1547

    PubMed  CAS  Google Scholar 

  7. Kawauchi M, Suzuki J, Morishita R, Wada Y, Izawa A, Tomita N et al (2000) Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-­AVE-liposome method in mice and nonhuman primates. Circ Res 87:1063–1068

    PubMed  CAS  Google Scholar 

  8. Yamasaki K, Asai T, Shimizu M, Aoki M, Hashiya N, Sakonjo H et al (2003) Inhibition of NFkappaB activation using cis-element ‘decoy’ of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther 10:356–364

    PubMed  CAS  Google Scholar 

  9. Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskämper J et al (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119:1241–1252

    PubMed  CAS  Google Scholar 

  10. Tsunoda S, Mazda O, Oda Y, Iida Y, Akabame S, Kishida T et al (2005) Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun 336:118–127

    PubMed  CAS  Google Scholar 

  11. Rinne A, Littwitz C, Kienitz M-C, Gmerek A, Bösche LI, Pott L et al (2006) Gene silencing in adult rat cardiac myocytes in vitro by adenovirus-mediated RNA interference. J Muscle Res Cell Motil 27:413–421

    PubMed  CAS  Google Scholar 

  12. Macejak DG, Lin H, Webb S, Chase J, Jensen K, Jarvis TC et al (1999) Adenovirus-mediated expression of a ribozyme to c-mybmRNA inhibits smooth muscle cell proliferation and neointima formation in vivo. J Virol 73:7745–7751

    PubMed  CAS  Google Scholar 

  13. Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A et al (2000) Ribozyme oligonucleotides against TGF-b inhibited neointimal formation after vascular injury in rat model: potential application of ribozyme strategy to treat cardiovascular disease. Circulation 102:1308–1314

    PubMed  CAS  Google Scholar 

  14. Gaffney MM, Hynes SO, Barry F, O’Brien T (2007) Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 152:175–188

    PubMed  CAS  Google Scholar 

  15. Müller OJ, Ksienzyk J, Katus HA (2008) Gene-therapy delivery strategies in cardiology. Future Cardiol 4:135–150

    PubMed  Google Scholar 

  16. Felgner PL, Barenholz Y, Behr JP, Cheng SH, Cullis P, Huang L et al (1997) Nomenclature for synthetic gene delivery systems. Hum Gene Ther 8:511–512

    PubMed  CAS  Google Scholar 

  17. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82:2217–2221

    PubMed  CAS  Google Scholar 

  18. Acsadi G, Jiao SS, Jani A, Duke D, Williams P, Chong W et al (1991) Direct gene transfer and expression into rat heart in vivo. New Biol 3:71–81

    PubMed  CAS  Google Scholar 

  19. Nabel EG (1995) Gene therapy for cardiovascular disease. Circulation 91:541–548

    PubMed  CAS  Google Scholar 

  20. Isner JM (2002) Myocardial gene therapy. Nature 415:234–239

    PubMed  CAS  Google Scholar 

  21. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF 165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    PubMed  CAS  Google Scholar 

  22. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM et al (2001) Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103:2138–2143

    PubMed  CAS  Google Scholar 

  23. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Rusyllo W et al (2005) Direct intramyocardial plasmid VEGF-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol 45:982–988

    PubMed  CAS  Google Scholar 

  24. Qin L, Pahud DR, Ding Y, Bielinska AU, Kukowska-Latallo JF, Baker JR et al (1998) Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum Gene Ther 9:553–560

    PubMed  CAS  Google Scholar 

  25. Kizana E, Alexander IE (2003) Cardiac gene therapy: therapeutic potential and current ­progress. Curr Gene Ther 3:418–451

    PubMed  CAS  Google Scholar 

  26. Wasala NB, Shin J-H, Duan D (2011) The evolution of heart gene delivery vectors. J Gene Med 13:557–565

    PubMed  CAS  Google Scholar 

  27. Vinge LE, Raake PW, Koch WJ (2008) Gene therapy in heart failure. Circ Res 102:1458–1470

    PubMed  CAS  Google Scholar 

  28. Hinkel R, Trenkwalder T, Kupatt C (2011) Gene therapy for ischemic heart disease. Expert Opin Biol Ther 11:723–737

    PubMed  CAS  Google Scholar 

  29. Rapti K, Chaanine AH, Hajjar RJ (2011) Targeted gene therapy for the treatment of heart failure. Can J Cardiol 27:265–283

    PubMed  CAS  Google Scholar 

  30. Ding W, Zhang L, Yan Z, Engelhardt JF (2005) Intracellular trafficking of adeno-associated viral vectors. Gene Ther 12:873–880

    PubMed  CAS  Google Scholar 

  31. Zhao J, Pettigrew GJ, Thomas J, Vandenberg JI, Delriviere L, Bolton EM et al (2002) Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 97:348–358

    PubMed  CAS  Google Scholar 

  32. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A et al (2003) ‘Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 10:630–636

    PubMed  CAS  Google Scholar 

  33. Fleury S, Simeoni E, Zuppinger C, Deglon N, von Segesser LK, Kappenberger L, Vassalli G (2003) Multiply attenuated, self-inactivating lentiviral vectors efficiency deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 197:2375–2382

    Google Scholar 

  34. Niwano K, Arai M, Koitabashi N, Watanabe A, Ikeda Y, Miyoshi H et al (2008) Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther 16:1002–1004

    Google Scholar 

  35. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T (1993) Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73:1202–1207

    PubMed  CAS  Google Scholar 

  36. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA et al (1993) Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA 90:11498–11502

    PubMed  CAS  Google Scholar 

  37. French BA, Mazur W, Geske RS, Bolli R (1994) Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414–2424

    PubMed  CAS  Google Scholar 

  38. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK et al (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 95:5251–5256

    PubMed  CAS  Google Scholar 

  39. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC et al (1999) Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery. J Clin Invest 104:21–29

    PubMed  CAS  Google Scholar 

  40. Berns KI, Giraud C (1996) Biology of adeno-associated virus. Curr Top Microbiol Immunol 218:1–23

    PubMed  CAS  Google Scholar 

  41. Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 79:2077–2081

    PubMed  CAS  Google Scholar 

  42. Laughlin CA, Tratschin JD, Coon H, Carter BJ (1983) Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23:65–73

    PubMed  CAS  Google Scholar 

  43. Rivera VM, Gao GP, Grant RL, Schnell MA, Zoltick PW, Rozamus LW et al (2005) Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 105:1424–1430

    PubMed  CAS  Google Scholar 

  44. Coura Rdos S, Nardi NB (2007) The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 4:99

    PubMed  Google Scholar 

  45. Ziello JE, Huang Y, Jovin IS (2010) Cellular endocytosis and gene delivery. Mol Med 16:222–229

    PubMed  CAS  Google Scholar 

  46. Coura RS, Nardi NB (2008) A role for adeno-associated viral vectors in gene therapy. Gene Mol Biol 31:1–11

    CAS  Google Scholar 

  47. Di Pasquale G, Chiorini JA (2006) AAV transcytosis through barrier epithelia and ­endothelium. Mol Ther 13:506–516

    PubMed  Google Scholar 

  48. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al (2005) Adeno-associated virus ­serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23:321–328

    PubMed  CAS  Google Scholar 

  49. Melo LG, Agraval R, Zhang L, Rezvani M, Mangi AA et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme ­oxygenase gene. Circulation 105:602–607

    PubMed  CAS  Google Scholar 

  50. Gregorovic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10:828–834

    Google Scholar 

  51. Wang J, Faust SM, Rabinowitz JE (2011) The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 50:793–802

    PubMed  CAS  Google Scholar 

  52. Müller OJ, Katus HA, Bekeredjian R (2007) Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc Res 73:453–462

    PubMed  Google Scholar 

  53. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR (2011) Current strategies for myocardial gene delivery. J Mol Cell Cardiol 50:766–776

    PubMed  CAS  Google Scholar 

  54. Katz MG, Fargnoli AS, Pritchette LA, Bridges CR (2012) Gene delivery technologies for cardiac applications. Gene Ther 19(6):659–669

    PubMed  CAS  Google Scholar 

  55. Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwand LA (1992) Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193–198

    PubMed  CAS  Google Scholar 

  56. Tomiyasu K, Oda Y, Nomura M, Satoh E, Fushiki S, Imanishi J et al (2000) Direct intracardiomuscular transfer of β2-adrenergic receptor gene augments cardiac output in cardiomyopathic hamsters. Gene Ther 7:2087–2093

    PubMed  CAS  Google Scholar 

  57. Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE et al (2009) Myocardial adeno-associated virus serotype 6-bARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119:89–98

    PubMed  CAS  Google Scholar 

  58. Pätilä T, Ikonen T, Rutanen J, Ahonen A, Lommi J, Lappalainen K et al (2006) Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia. J Heart Lung Transplant 25:206–213

    PubMed  Google Scholar 

  59. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH et al (2000) Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth ­factor in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol 35:1323–1330

    PubMed  CAS  Google Scholar 

  60. Vera Janavel GL, De Lorenzi A, Cortes C, Olea FD, Cabeza Meckert P, Bercovich A et al (2012) Effect of VEGF gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after two months of coronary artery occlusion. J Gene Med 14(4):279–287

    PubMed  CAS  Google Scholar 

  61. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD (2001) Molecular enhancement of porcine cardiac chronotropy. Heart 86:559–562

    PubMed  CAS  Google Scholar 

  62. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ (2002) Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv 55:392–397

    PubMed  Google Scholar 

  63. Bish LT, Sleeper MM, Braibard B, Cole S, Russell N, Withnall E et al (2000) Percutaneous transendocardial delivery of self-complementary AAV6 achieves global cardiac gene transfer in canines. Mol Ther 16:1953–1959

    Google Scholar 

  64. von Harsdorf R, Schott RJ, Shen YT, Vatner SF, Mahdavi V, Nadal-Ginard B (1993) Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 72:688–695

    Google Scholar 

  65. Hedman M, Hartikainen J, Ylä-Herttuala S (2011) Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther 18:743–749

    PubMed  CAS  Google Scholar 

  66. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW et al (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEFG 121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474

    PubMed  CAS  Google Scholar 

  67. Lamping KG, Rios CD, Chun JA, Ooboshi H, Davidson BL, Heistad DD (1997) Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 272:H310–H317

    PubMed  CAS  Google Scholar 

  68. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC (1999) Efficient in vivo ­catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 22:123–129

    Google Scholar 

  69. Fromes Y, Salmon A, Wang X, Collin H, Rouche A, Hagege A et al (1999) Gene delivery to the myocardium by intrapericardial injection. Gene Ther 6:683–688

    PubMed  CAS  Google Scholar 

  70. Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Goncalves L et al (1999) Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 44:294–302

    PubMed  CAS  Google Scholar 

  71. Zhang JCL, Woo YJ, Chen JA, Swain JL, Sweeney HL (1999) Efficient transmural cardiac gene transfer by intrapericardial injection in neonatal mice. J Mol Cell Cardiol 31:721–732

    PubMed  CAS  Google Scholar 

  72. Mühlhauser J, Jones M, Yamada I, Cirielli C, Lemarchand P, Gloe TR et al (1996) Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther 3:145–153

    PubMed  Google Scholar 

  73. Logeart D, Hatem SN, Heimburger M, Roux AL, Michel JB, Mercadier JJ (2001) How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 12:1601–1610

    PubMed  CAS  Google Scholar 

  74. Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL et al (1996) Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 62:1669–1676

    PubMed  CAS  Google Scholar 

  75. Logeart D, Hatem SN, Rücker-Martin C, Chossat N, Nevo N, Haddada H et al (2000) Highly efficient adenovirus-mediated gene transfer to cardiac myocytes after single-pass coronary delivery. Hum Gene Ther 11:1015–1022

    PubMed  CAS  Google Scholar 

  76. Hayase M, del Monte F, Kawase Y, MacNeill BD, McGregor J, Yoneyama R et al (2005) Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol 288:H2995–H3000

    PubMed  CAS  Google Scholar 

  77. Ding Z, Fach C, Sasse A, Gődecke A, Schrader J (2004) A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Ther 11:260–265

    PubMed  CAS  Google Scholar 

  78. Wright MJ, Wightman LML, Latchman DS, Marber MS (2001) In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther 8:1833–1839

    PubMed  CAS  Google Scholar 

  79. Emani SM, Shah AS, Bowman MK, Emani S, Wilson K, Glower DD et al (2003) Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 8:306–313

    PubMed  CAS  Google Scholar 

  80. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH (1997) Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 94:4664–4668

    PubMed  CAS  Google Scholar 

  81. Kaspar BK, Roth DM, Lai NC, Drumm JD, Erickson DA, McKirnan MD, Hammond HK (2005) Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 7:316–324

    PubMed  CAS  Google Scholar 

  82. Parsa CJ, Reed RC, Walton GB, Pascal LS, Thompsom RB, Petrofski JA et al (2005) Catheter-mediated subselective intracoronary gene delivery to the rabbit heart: introduction of a novel method. J Gene Med 7:595–603

    PubMed  Google Scholar 

  83. Boekstegers P, Kupatt C (2004) Current concepts and applications of coronary venous retroinfusions. Basic Res Cardiol 99:373–381

    PubMed  Google Scholar 

  84. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C et al (2000) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 7:232–240

    PubMed  CAS  Google Scholar 

  85. von Degenfeld G, Raake P, Kupatt C, Lebherz C, Hinkel R, Gildehaus FJ et al (2003) Selective pressure-regulated retroinfusion of FGF-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 42:1120–1128

    Google Scholar 

  86. Kuppat C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandner T et al (2003) VEGF 165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role eNOS phosphorylation. FASEB J 17:705–707

    Google Scholar 

  87. Lassaletta AD, Chu LM, Sellke FW (2011) Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106:897–909

    PubMed  Google Scholar 

  88. Rome JJ, Shayani V, Newmark KD, Farrell S, Lee SW, Virmani R et al (1994) Adenoviral vector mediated gene transfer into sheep arteries using a double balloon catheter. Hum Gene Ther 5:1249–1258

    PubMed  CAS  Google Scholar 

  89. Flugelman MY, Jaklitsch MT, Newman KD, Casscells W, Bratthauer GL, Dichek DA (1992) Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 85:1110–1117

    PubMed  CAS  Google Scholar 

  90. Tahlil O, Brami M, Feldman LJ, Branellec D, Steg PG (1997) The Dispatch catheter as a delivery tool for arterial tool for arterial gene transfer. Cardiovasc Res 33:181–187

    PubMed  CAS  Google Scholar 

  91. Pavlides GS, Barath P, Maginas A, Vasilikos V, Cokkinos DV, O’Neill WW (1997) Intramural drug delivery by direct injection within arterial wall: first clinical experience with a novel intracoronary delivery-infiltrator system. Cathet Cardiovasc Diagn 41:287–292

    PubMed  CAS  Google Scholar 

  92. Sharif F, Hynes SO, McMahon J, Cooney R, Conroy S, Dockery P et al (2006) Gene-eluting stents: comparison of adenoviral and adeno-associated viral gene delivery to the blood vessel wall in vivo. Hum Gene Ther 17:741–750

    PubMed  CAS  Google Scholar 

  93. Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Vohs JM, Wong GS et al (2006) Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci USA 103:159–164

    PubMed  CAS  Google Scholar 

  94. Perstein I, Connolly JM, Cui X, Song C, Li Q, Jones PL et al (2003) DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther 10:1420–1428

    Google Scholar 

  95. Lemos PA, Serruys PW, Sousa JE (2003) Drug-eluting stents: cost versus clinical benefit. Circulation 107:3003–3007

    PubMed  Google Scholar 

  96. Lee J, Laks H, Drinkwater DC, Blitz A, Lam L, Shiraishi Y et al (1996) Cardiac gene transfer by intracoronary infusion of adenovirus vector-mediated reporter gene in the transplanted mouse heart. J Thorac Cardiovasc Surg 111:246–252

    PubMed  CAS  Google Scholar 

  97. Kypson AP, Peppel K, Akhter SA, Lilly RE, Glower DD, Lefkowitz RJ et al (1998) Ex vivo adenovirus-mediated gene transfer to the adult rat heart. J Thorac Cardiovasc Surg 115:623–630

    PubMed  CAS  Google Scholar 

  98. Griscelli F, Belli E, Opolon P, Musset K, Connault E, Perricaudet M et al (2003) Adenovirus-mediated gene transfer to the transplanted piglet heart after intracoronary injection. J Gene Med 5:109–119

    PubMed  CAS  Google Scholar 

  99. Wang J, Ma Y, Knechtle SJ (1996) Adenovirus-mediated gene transfer into rat cardiac allografts: comparison of direct injection and perfusion. Transplantation 61:1726–1729

    PubMed  CAS  Google Scholar 

  100. Shah AS, White DC, Tai O, Hata JA, Wilson KH, Pippen A et al (2000) Adenovirus-mediated genetic manipulation of the myocardial β-adrenergic signaling system in transplanted hearts. J Thorac Cardiovasc Surg 120:581–588

    PubMed  CAS  Google Scholar 

  101. Bridges CR, Burkman JM, Malekan R, Konig SM, Chen H, Yarnall CB et al (2002) Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Ann Thorac Surg 73:1939–1946

    PubMed  Google Scholar 

  102. Davidson MJ, Jones JM, Emani SM, Wilson KH, Jaggers J, Koch WJ et al (2001) Cardiac gene delivery with cardiopulmonary bypass. Circulation 104:131–133

    PubMed  CAS  Google Scholar 

  103. Jones JM, Wilson KH, Koch WJ, Milano CA (2002) Adenoviral gene transfer to the heart during cardiopulmonary bypass: effect of myocardial protection technique on transgene expression. Eur J Cardiothorac Surg 21:847–852

    PubMed  CAS  Google Scholar 

  104. Ikeda Y, Gu Y, Iwanada Y, Hoshijima M, Oh SS, Giordano FJ et al (2002) Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation 105:502–508

    PubMed  CAS  Google Scholar 

  105. White JD, Thesier DM, Swain JD, Katz MG, Tomasulo CE, Henderson A et al (2011) Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther 18:546–552

    PubMed  CAS  Google Scholar 

  106. Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JE et al (2011) A Pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of BARKct gene therapy: developing a quantitative definition of the therapeutic window. J Card Fail 17:691–699

    PubMed  Google Scholar 

  107. Kaye DM, Preovolos A, Marshall BS, Byrne M, Hoshijima M, Hajjar RJ et al (2007) Percutaneous cardiac recirculation mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50:253–260

    PubMed  CAS  Google Scholar 

  108. Bridges CR (2009) Recirculating method of cardiac gene delivery should be called ‘non-recirculating’ method. Gene Ther 16:939–940

    PubMed  CAS  Google Scholar 

  109. Shohet RV, Chen S, Zhou Y-T, Wang Z, Meidell RS, Unger RH, Grayburn PA (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 101:2554–2556

    PubMed  CAS  Google Scholar 

  110. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV (2003) Ultrasound-targeted microbubbles destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 108:1022–1026

    PubMed  Google Scholar 

  111. Beeri R, Guerrero JL, Supple G, Sullivan S, Levine RA, Hajjar RJ (2002) New efficient catheter-based system for myocardial gene delivery. Circulation 106:1756–1759

    PubMed  CAS  Google Scholar 

  112. Marshall WG, Boone BA, Burgos JD, Gografe SI, Baldwin MK, Danielson ML et al (2010) Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther 17:419–423

    PubMed  CAS  Google Scholar 

  113. Ayuni EL, Gazdhar A, Giraud MN, Kadner A, Gugger M, Cecchini M et al (2010) In vivo electroporation mediated gene delivery to the beating heart. PLoS One 5:e14467

    PubMed  Google Scholar 

  114. Kumar A, Jena PK, Bahera S, Lockey RF, Mohapatra S, Mohapatra S (2010) Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 6:64–69

    PubMed  CAS  Google Scholar 

  115. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B et al (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 15:698–703

    Google Scholar 

  116. Sanborn TA, Hackett NR, Lee LY, El-Sawy T, Blanko I, Tarazona N et al (2001) Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Catheter Cardiovasc Interv 52:260–266

    PubMed  CAS  Google Scholar 

  117. Gwon HC, Jeong JO, Kim HJ, Park SW, Lee SH, Park SJ et al (2001) The feasibility and safety of fluoroscopy-guided percutaneous intramyocardial gene injection in porcine heart. Int J Cardiol 79:77–88

    PubMed  CAS  Google Scholar 

  118. Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ et al (2002) Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 105:1282–1284

    PubMed  Google Scholar 

  119. Kornowski R, Leon MB, Fuchs S, Vodovotz Y, Flynn MA, Gordon DA et al (2000) Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 35:1031–1039

    PubMed  CAS  Google Scholar 

  120. Baklanov DV, de Muinck ED, Simons M, Moodie KL, Arbuckle BE, Thompson CA et al (2005) Live 3D echo guidance of catheter-based endomyocardial injection. Catheter Cardiovasc Interv 65:340–345

    PubMed  Google Scholar 

  121. Davia K, Bernovich E, Ranu HK, del Monte F, Terracciano CM, MacLeod KT et al (2001) SERCA2a overexpression decreases the incidence of aftercontractions in adult rabbit ventricular myocytes. J Mol Cell Cardiol 33:1005–1015

    PubMed  CAS  Google Scholar 

  122. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK et al (2004) Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA 101:5622–5627

    PubMed  Google Scholar 

  123. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 15:1550–1557

    PubMed  CAS  Google Scholar 

  124. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID). Circulation 124:304–313

    PubMed  CAS  Google Scholar 

  125. Most P, Remppis A, Pleger ST, Katus HA, Koch WJ (2007) S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 293:R568–R577

    PubMed  CAS  Google Scholar 

  126. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al (2007) Stable myocardial-specific AAV-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115:2506–2515

    PubMed  CAS  Google Scholar 

  127. Pleger ST, Shan C, Klienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al (2011) Cardiac AAV9-S100A1 Gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 3:92ra64

    PubMed  CAS  Google Scholar 

  128. Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, Ikeda Y et al (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 113:727–736

    PubMed  CAS  Google Scholar 

  129. Tsuji T, del Monte F, Yoshikawa Y, Abe T, Shimizu J, Nakajima-Takenaka C et al (2009) Rescue of Ca2+ overload-induced left ventricular dysfunction by targeted ablation of phospholamban. Am J Physiol Heart Circ Physiol 296:H310–H317

    PubMed  CAS  Google Scholar 

  130. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    PubMed  CAS  Google Scholar 

  131. Brodde OE (1993) Beta-adrenoreceptors in cardiac disease. Pharmacol Ther 60:405–430

    PubMed  CAS  Google Scholar 

  132. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA et al (1995) Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor. Science 268:1350–1353

    PubMed  CAS  Google Scholar 

  133. Brinks H, Koch WJ (2010) βARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. J Cardiovasc Transl Res 3:499–506

    PubMed  Google Scholar 

  134. White DC, Hata JA, Shah AS, Glower DD, Lefkowitz R, Koch WJ (2000) Preservation of myocardial b-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci USA 97:5428–5433

    PubMed  CAS  Google Scholar 

  135. Tevaearai HT, Walton GB, Keys JR, Koch WJ, Eckhart AD et al (2005) Acute ischemic cardiac dysfunction is attenuated via gene transfer of a peptide inhibitor of the b-adrenergic receptor kinase (βARK1). J Gene Med 7:1172–1177

    PubMed  CAS  Google Scholar 

  136. Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA (2005) Level of b-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure-overload-induced heart failure. Circulation 111:591–597

    PubMed  CAS  Google Scholar 

  137. Lavu M, Gundewar S, Lefer DJ (2011) Gene therapy for ischemic heart disease. J Mol Cell Cardiol 50:742–750

    PubMed  CAS  Google Scholar 

  138. Josko J, Gwozdz B, Jedrzejowska-Szypulka H, Hendryk S (2000) Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit 6:1047–1052

    PubMed  CAS  Google Scholar 

  139. Bull DA, Bailey SH, Rentz JJ, Zebrack JS, Lee M, Litwin SE et al (2003) Effect of Terplex/VEGF-165 gene therapy on left ventricular function and structure following myocardial infarction. VEGF gene therapy for myocardial infarction. J Control Release 93:175–181

    PubMed  CAS  Google Scholar 

  140. Vera Javanel GL, Crottogini A, Cabeza Meckert P, Cuniberti L, Mele A, Papouchado M et al (2006) Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther 13:1133–1142

    Google Scholar 

  141. Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J et al (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1- dependent mechanisms. Circulation 119:845–856

    PubMed  Google Scholar 

  142. Ferrarini M, Arsic N, Recchia FA, Zentilin L, Zacchigna S, Xu X et al (2006) Adeno-associated virus-mediated transduction of VEGF 165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ Res 98:954–961

    PubMed  CAS  Google Scholar 

  143. Rissanen TT, Ylä-Herttuala S (2007) Current status of cardiovascular gene therapy. Mol Ther 15:1233–1247

    PubMed  CAS  Google Scholar 

  144. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S et al (1995) Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91:145–153

    PubMed  CAS  Google Scholar 

  145. Gao MH, Lai NC, McKirnan MD, Roth DA, Rubanyi GM, Roth DM, Hammond HK (2004) Increased regional function and perfusion after intracoronary delivery of adenovirus encoding FGF4: report of preclinical data. Hum Gene Ther 15:574–587

    PubMed  CAS  Google Scholar 

  146. Suzuki G, Lee TC, Fallavollita JA, Canty JM (2005) Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 96:767–775

    PubMed  CAS  Google Scholar 

  147. Henry TD, Grines CL, Watkins MW, Barbeau G, Moreadith R, Andrasfay T, Engler RL (2007) Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 50:1038–1046

    PubMed  CAS  Google Scholar 

  148. Donahue JK (2004) Gene therapy for cardiac arrhythmias. Ann N Y Acad Sci 1015:332–337

    PubMed  CAS  Google Scholar 

  149. Donahue JK, Heldman AW, Fraser H, McDonald AD, Miller JM, Rade JJ et al (2000) Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med 6:1395–1398

    PubMed  CAS  Google Scholar 

  150. Bunch TJ, Mahapatra S, Bruce GK, Johnson SB, Miller DV, Horne BD et al (2006) Impact of transforming growth factor-beta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart. Circulation 113:2485–2494

    PubMed  CAS  Google Scholar 

  151. Edelberg JM, Aird WC, Rosenberg RD (1998) Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest 101:337–343

    PubMed  CAS  Google Scholar 

  152. Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L et al (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109:506–512

    PubMed  Google Scholar 

  153. Brunner M, Kodirov SA, Mitchell GF, Buckett PD, Shibata K, Folco EJ et al (2003) In vivo gene transfer of Kv1.5 normalized action potential duration and shortens QT interval in mice with long QT phenotype. Am J Physiol Heart Circ Physiol 285:H194–H203

    PubMed  CAS  Google Scholar 

  154. Sasano T, McDonald AD, Kikuchi K, Donahue JK (2006) Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med 12:1256–1258

    PubMed  CAS  Google Scholar 

  155. Kawada T, Nakazawa M, Nakauchi S, Yamazaki K, Shimamoto R, Urabe M (2002) Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performance and the prognosis of TO-2 hamsters. Proc Natl Acad Sci USA 99:901–906

    PubMed  CAS  Google Scholar 

  156. Nuss HB, Marban E, Johns DC (1999) Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 103:889–896

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Bridges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katz, M.G., Fargnoli, A.S., Pritchette, L.A., Bridges, C.R. (2013). Gene Transfer to the Heart: Emerging Strategies for the Selection of Vectors, Delivery Techniques, and Therapeutic Targets. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_8

Download citation

Publish with us

Policies and ethics