Skip to main content

Fluorescent Lipids as Probes for Sphingosine Kinase Activity by Capillary Electrophoresis

  • Protocol
  • First Online:
Capillary Electrophoresis of Biomolecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 984))

Abstract

Capillary electrophoresis (CE) is one among a number of highly sensitive chemical separation techniques used to characterize single or a small number of cells and to develop assays of enzymatic activity. Other commonly used techniques include mass spectrometry and electrochemistry; however, CE using laser-induced fluorescence detection (LIF) is the most sensitive of these techniques. In CE-LIF, fluorescently labeled proteins or lipids are normally separated based on their size to charge ratio in the interior of a small capillary filled with an electrolyte upon the application of an electric field. In this chapter, we describe the application of CE-LIF for the determination of the bioactivity of fluorescently lipids and sphingosine kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peyruchaud O (2009) Novel implications for lysophospholipids, lysophosphatidic acid and sphingosine 1-phosphate, as drug targets in cancer. Anti-Cancer Agents Med Chem 9:381–391

    Article  CAS  Google Scholar 

  2. Okada T, Kajimoto T, Jahangeer S et al (2009) Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 21:7–13

    Article  PubMed  CAS  Google Scholar 

  3. Gault CR, Obeid LM (2011) Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. Crit Rev Biochem Mol Biol 46:342–351

    Article  PubMed  CAS  Google Scholar 

  4. Ponnusamy S, Meyers-Needham M, Senkal CE et al (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 10:1603–1624

    Article  Google Scholar 

  5. Antoon JW, White MD, Slaughter EM, Driver JL, Khalili HS, Elliott S, Smith CD, Burow ME, Beckman BS (2011) Targeting NFκB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2. Cancer Biol Ther 11:678–689

    Article  PubMed  CAS  Google Scholar 

  6. Oskouian B et al (2010) Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 688:185–205

    Article  PubMed  CAS  Google Scholar 

  7. Takabe K, Paugh SW, Milstien S et al (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60:181–195

    Article  PubMed  CAS  Google Scholar 

  8. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Rev Mol Cell Biol 4:397–407

    Article  CAS  Google Scholar 

  9. Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307

    Article  PubMed  CAS  Google Scholar 

  10. Olivera A, Spiegel S (2001) Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins Other Lipid Mediat 64:123–134

    Article  PubMed  CAS  Google Scholar 

  11. Kohno M, Momoi M, Oo ML et al (2006) Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 26:7211–7223

    Article  PubMed  CAS  Google Scholar 

  12. Xia P, Gamble JR, Wang L et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530

    Article  PubMed  CAS  Google Scholar 

  13. French KJ, Schrecengost RS, Lee BD et al (2003) Discovery and Evaluation of Inhibitors of Human Sphingosine Kinase. Cancer Res 63:5962–5969

    PubMed  CAS  Google Scholar 

  14. Maceyka M, Sankala H, Hait NC et al (2005) SphK1 and SphK2, Sphingosine Kinase Isoenzymes with Opposing Functions in Sphingolipid Metabolism. J Biol Chem 280:37118–37129

    Article  PubMed  CAS  Google Scholar 

  15. Milstien S, Spiegel S (2006) Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 9:148–150

    Article  PubMed  CAS  Google Scholar 

  16. Sensken SC (2010) B. C., Nagarajan M, Peest U, Pabst O, Gräler MH. (2010) Redistribution of sphingosine 1-phosphate by sphingosine kinase 2 contributes to lymphopenia. J Immunol 184:4133–4142

    Article  PubMed  CAS  Google Scholar 

  17. Lai WQ, Irwan AW, Goh HH, Melendez AJ, McInnes IB, Leung BP (2009) Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J Immunol 183:2097–2103

    Article  PubMed  CAS  Google Scholar 

  18. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 10:1603–1624

    Article  Google Scholar 

  19. Billich A, Ettmayer P (2004) Fluorescence-based assay of sphingosine kinases. Anal Biochem 326:114–119

    Article  PubMed  CAS  Google Scholar 

  20. Roberts JL, Moretti PAB, Darrow AL et al (2004) An assay for sphingosine kinase activity using biotinylated sphingosine and streptavidin-coated membranes. Anal Biochem 331:122–129

    PubMed  CAS  Google Scholar 

  21. Itatani J, Sportsman R, Boge A (2006) In http://echelon-inc.com/corp/IMAP_TR-FRETSphingosine.pdf.

  22. Lee KJ, Mwongela SM, Kottegoda S et al (2008) Determination of Sphingosine Kinase Activity for Cellular Signaling Studies. Anal Chem 80:1620–1627

    Article  PubMed  CAS  Google Scholar 

  23. Yangyuoru PM, Otieno AC, Mwongela SM (2011) Determination of sphingosine kinase 2 activity using fluorescent sphingosine by capillary electrophoresis. Electrophoresis 32:1742–1749

    Article  PubMed  CAS  Google Scholar 

  24. Vessey DA, Kelley M, Karliner JS (2005) A rapid radioassay for sphingosine kinase. Anal Biochem 337:136–137

    Article  PubMed  CAS  Google Scholar 

  25. Pitson SM, Moretti PAB, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22:5491–5500

    Article  PubMed  CAS  Google Scholar 

  26. Liu H, Sugiura M, Nava VE et al (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  PubMed  CAS  Google Scholar 

  27. Cuvillier O (2002) Sphingosine in apoptosis signaling, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1585:153–162

    CAS  Google Scholar 

  28. Buehrer BM, Bell RM (1992) Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem 267:3154–3159

    PubMed  CAS  Google Scholar 

  29. Yatomi Y, Ruan F, Megidish T et al (1996) N, N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry (Mosc) 35:626–633

    Article  CAS  Google Scholar 

  30. Pitson SM, D’Andrea RJ, Vandeleur L et al (2000) Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350:429–441

    Article  PubMed  CAS  Google Scholar 

  31. Kim J-W, Kim Y-W, Inagaki Y et al (2005) Synthesis and evaluation of sphingoid analogs as inhibitors of sphingosine kinases. Bioorg Med Chem 13:3475–3485

    Article  PubMed  CAS  Google Scholar 

  32. Vessey DA, Kelley M, Zhang J et al (2007) Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol 21:273–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research study was supported by the Kent State University research startup fund and the Farris Innovation award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Mwongela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yangyuoru, P.M., Hammonds-Odie, L., Mwongela, S.M. (2013). Fluorescent Lipids as Probes for Sphingosine Kinase Activity by Capillary Electrophoresis. In: Volpi, N., Maccari, F. (eds) Capillary Electrophoresis of Biomolecules. Methods in Molecular Biology, vol 984. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-296-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-296-4_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-295-7

  • Online ISBN: 978-1-62703-296-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics