Skip to main content

Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Circular-dichroism (CD) spectroscopy is a powerful tool for the secondary-structure analysis of proteins. The structural information obtained by CD does not have atomic-level resolution (unlike X-ray crystallography and NMR spectroscopy), but it has the great advantage of being applicable to both nonnative and native proteins in a wide range of solution conditions containing lipids and detergents. The development of synchrotron-radiation CD (SRCD) instruments has greatly expanded the utility of this method by extending the spectra to the vacuum-ultraviolet region below 190 nm and producing information that is unobtainable by conventional CD instruments. Combining SRCD data with bioinformatics provides new insight into the conformational changes of proteins in a membrane environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzi E, Hölzemann G, Seelig J (1997) Interaction of Alzheimer β-amyloid peptide (1–40) with lipid membranes. Biochemistry 36:14845–14852

    Article  PubMed  CAS  Google Scholar 

  2. Jo E, McLaurin J, Yip CM, St G-HP, Fraser PE (2000) alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334

    Article  PubMed  CAS  Google Scholar 

  3. Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275:34393–34398

    Article  PubMed  CAS  Google Scholar 

  4. Bokvist M, Lindström F, Watts A, Gröbner G (2004) Two types of Alzheimer’s beta-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    Article  PubMed  CAS  Google Scholar 

  5. Matveev AV, Fitzgerald JB, Xu J, Malykhina AP, Rodgers KK, Ding XQ (2010) The disease-causing mutations in the carboxyl terminus of cone cyclic nucleotide-gated channel CNGA3 subunit alter the local secondary structure and interfere with the channel active conformational change. Biochemistry 49:1628–1639

    Article  PubMed  CAS  Google Scholar 

  6. Nunuková V, Urbánková E, Jelokhani-Niaraki M, Chaloupka R (2010) Ion channel activity of transmembrane segment 6 of Escherichia coli proton-dependent manganese transporter. Biopolymers 93:718–726

    PubMed  Google Scholar 

  7. Fasman GR (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York

    Google Scholar 

  8. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  9. Wallace BA, Janes RW (2009) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. IOS, Amsterdam

    Google Scholar 

  10. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometric features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  11. King SM, Johnson WC (1999) Assigning secondary structure from protein coordinate data. Proteins 35:313–320

    Article  PubMed  CAS  Google Scholar 

  12. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  PubMed  CAS  Google Scholar 

  13. Toumadje A, Alcorn SW, Johnson WC Jr (1992) Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Anal Biochem 200:321–331

    Article  PubMed  CAS  Google Scholar 

  14. Sutherland JC, Emrick A, France LL, Monteleone DC, Trunk J (1992) Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure. Biotechniques 13:588–590

    PubMed  CAS  Google Scholar 

  15. Wallace BA (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nat Struct Biol 7:708–709

    Article  PubMed  CAS  Google Scholar 

  16. Ojima N, Sakai K, Fukazawa T, Gekko K (2000) Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and off-line performance. Chem Lett 29:832–833

    Article  Google Scholar 

  17. Matsuo K, Yonehara R, Gekko K (2004) Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem 135:405–411

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo K, Yonehara R, Gekko K (2005) Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem 138:79–88

    Article  PubMed  CAS  Google Scholar 

  19. Matsuo K, Watanabe H, Gekko K (2008) Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network. Proteins 73:104–112

    Article  PubMed  CAS  Google Scholar 

  20. Nishi K, Maruyama T, Halsall HB, Handa T, Otagiri M (2004) Binding of alpha1-acid glycoprotein to membrane results in a unique structural change and ligand release. Biochemistry 43:10513–10519

    Article  PubMed  CAS  Google Scholar 

  21. Miles AJ, Drechsler A, Kristan K, Anderluh G, Norton RS, Wallace BA, Separovic F (2008) The effects of lipids on the structure of the eukaryotic cytolysin equinatoxin II: a synchrotron radiation circular dichroism spectroscopic study. Biochim Biophys Acta 1778:2091–2096

    Article  PubMed  CAS  Google Scholar 

  22. Matsuo K, Namatame H, Taniguchi M, Gekko K (2009) Membrane-induced conformational change of alpha1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy. Biochemistry 48:9103–9111

    Article  PubMed  CAS  Google Scholar 

  23. Yahi-Utsumi M, Matsuo K, Yanagisawa K, Gekko K, Kato K (2011) Spectroscopic characterization of intermolecular interaction of amyloid beta promoted on GM1 micelles. Int J Alzheimers Dis. doi:10.4061/2011/925073

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  27. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  PubMed  CAS  Google Scholar 

  28. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  29. Wallace BA, Mao D (1984) Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal Biochem 142:317–328

    Article  PubMed  CAS  Google Scholar 

  30. Johnson CW Jr (1978) Circular dichroism spectroscopy and the vacuum ultraviolet region. Annu Rev Phys Chem 29:93–114

    Article  CAS  Google Scholar 

  31. Pysh ES (1976) Optical activity in the vacuum ultraviolet. Annu Rev Biophys Bioeng 5:63–75

    Article  PubMed  CAS  Google Scholar 

  32. Snyder PA, Rowe EM (1980) The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nucl Instrum Methods 172:345–349

    Article  CAS  Google Scholar 

  33. Sutherland JC, Keck PC, Griffin KP, Takacs PZ (1982) Simultaneous measurement of absorption and circular dichroism in a synchrotron spectrometer. Nucl Instrum Methods 195:375–379

    Article  CAS  Google Scholar 

  34. Wallace BA (2009) Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Q Rev Biophys 42:317–370

    Article  PubMed  CAS  Google Scholar 

  35. Wallace BA, Gekko K, Hoffmann SV, Lin YH, Sutherland JC, Tao J, Wien F, Janes RW (2010) Synchrotron radiation circular dichroism (SRCD) spectroscopy: an emerging method in structural biology for examining protein conformations and protein interactions. Nucl Instr Methods Phys Res A 649:177–178

    Article  Google Scholar 

  36. Matsuo K, Matsushima Y, Fukuyama T, Senba S, Gekko K (2002) Vacuum-ultraviolet circular dichroism of amino acids as revealed by synchrotron radiation spectrophotometer. Chem Lett 31:826–827

    Article  Google Scholar 

  37. Matsuo K, Fukuyama T, Yonehara R, Namatame H, Taniguchi M, Gekko K (2005) Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation. J Electron Spectrosc Relat Phenom 144–147:1023–1025

    Article  Google Scholar 

  38. Matsuo K, Sakai K, Matsushima Y, Fukuyama T, Gekko K (2003) Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal Sci 19:129–132

    Article  PubMed  CAS  Google Scholar 

  39. Takakuwa T, Konno T, Meguro H (1985) A new standard substance for calibration of circular dichroism: ammonium d-10-camphorsulfonate. Anal Sci 1:215–218

    Article  CAS  Google Scholar 

  40. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  PubMed  CAS  Google Scholar 

  41. Sreerama N, Venyaminov SY, Woody RW (1999) Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci 8:370–380

    Article  PubMed  CAS  Google Scholar 

  42. Abdul-Gader A, Miles AJ, Wallace BA (2011) A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics 27:1630–1636

    Article  PubMed  CAS  Google Scholar 

  43. Park K, Perczel A, Fasman GD (1992) Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Protein Sci 1:1032–1049

    Article  PubMed  CAS  Google Scholar 

  44. Wallace BA, Lees JG, Orry AJ, Lobley A, Janes RW (2003) Analyses of circular dichroism spectra of membrane proteins. Protein Sci 12:875–884

    Article  PubMed  CAS  Google Scholar 

  45. Sreerama N, Woody RW (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13:100–112

    Article  PubMed  CAS  Google Scholar 

  46. Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  PubMed  CAS  Google Scholar 

  47. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  PubMed  CAS  Google Scholar 

  48. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  PubMed  CAS  Google Scholar 

  49. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35:307–312

    Article  PubMed  CAS  Google Scholar 

  50. Perczel A, Hollósi M, Tusnády G, Fasman GD (1991) Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng 4:669–679

    Article  PubMed  CAS  Google Scholar 

  51. Böhm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  PubMed  Google Scholar 

  52. Klose DP, Wallace BA, Janes RW (2010) 2Struc: the secondary structure server. Bioinformatics 26:2624–2625

    Article  PubMed  CAS  Google Scholar 

  53. Pancoska P, Janota V, Keiderling TA (1999) Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra. Anal Biochem 267:72–83

    Article  PubMed  CAS  Google Scholar 

  54. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222

    Article  PubMed  CAS  Google Scholar 

  55. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  PubMed  CAS  Google Scholar 

  56. Lim VI (1974) Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J Mol Biol 88:857–872

    Article  PubMed  CAS  Google Scholar 

  57. Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  PubMed  CAS  Google Scholar 

  58. Holley LH, Karplus M (1989) Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A 86:152–156

    Article  PubMed  CAS  Google Scholar 

  59. Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584–599

    Article  PubMed  CAS  Google Scholar 

  60. King RD, Sternberg MJ (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5:2298–2310

    Article  PubMed  CAS  Google Scholar 

  61. Frishman D, Argos P (1996) Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 9:133–142

    Article  PubMed  CAS  Google Scholar 

  62. Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34:508–519

    Article  PubMed  CAS  Google Scholar 

  63. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  64. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  PubMed  CAS  Google Scholar 

  65. Zemla A, Venclovas C, Fidelis K, Rost B (1999) A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34:220–223

    Article  PubMed  CAS  Google Scholar 

  66. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  67. Simons KT, Bonneau R, Ruczinski I, Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 37:171–176

    Article  Google Scholar 

  68. Takada S (2001) Protein folding simulation with solvent-induced force field: folding pathway ensemble of three-helix-bundle proteins. Proteins 42:85–98

    Article  PubMed  CAS  Google Scholar 

  69. Vernier G, Chenal A, Vitrac H, Barumandzadhe R, Montagner C, Forge V (2007) Interactions of apomyoglobin with membranes: Mechanisms and effects on heme uptake. Protein Sci 16:391–400

    Article  PubMed  CAS  Google Scholar 

  70. Zhang X, Keiderling TA (2006) Lipid-induced conformational transitions of beta-lactoglobulin. Biochemistry 45:8444–8452

    Article  PubMed  CAS  Google Scholar 

  71. Zhang X, Ge N, Keiderling TA (2007) Electrostatic and hydrophobic interactions governing the interaction and binding of beta-lactoglobulin to membranes. Biochemistry 46:5252–5260

    Article  PubMed  CAS  Google Scholar 

  72. Arnulphi C, Sánchez SA, Tricerri MA, Gratton E, Jonas A (2005) Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. Biophys J 89:285–295

    Article  PubMed  CAS  Google Scholar 

  73. Miles AJ, Wallace BA, Esmann M (2011) Correlation of structural and functional thermal stability of the integral membrane protein Na, K-ATPase. Biochim Biophys Acta 1808:2573–2580

    Article  PubMed  CAS  Google Scholar 

  74. Cronin NB, O’Reilly A, Duclohier H, Wallace BA (2005) Effects of deglycosylation of sodium channels on their structure and function. Biochemistry 44:441–449

    Article  PubMed  CAS  Google Scholar 

  75. McKibbin C, Farmer NA, Jeans C, Reeves PJ, Khorana GH, Wallace BA, Edwards PC, Villa C, Booth PJ (2007) Opsin stability and folding: modulation by phospholipid bicelles. J Mol Biol 374:1319–1332

    Article  PubMed  CAS  Google Scholar 

  76. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1:409–417

    Article  PubMed  CAS  Google Scholar 

  77. Zell A, Mamier G, Vogt M, Mache N, Hubner R, Doring S, Herrmann KW, Soyez T, Schmalzl M, Sommer T, Hatzigeorgiou A, Posselt D, Schreiner T, Kett B, Clemente G, Wieland J (1995) Stuttgart Neural Network Simulator, Version 4.2. University of Stuttgart, Stuttgart, Germany. http://www.ra.cs.uni-tuebingen.de/downloads/SNNS/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Gekko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsuo, K., Gekko, K. (2013). Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics