Skip to main content

Part of the book series: Current Clinical Urology ((CCU))

  • 1431 Accesses

Abstract

Histotripsy is an experimental focused ultrasound technology that utilizes controlled cavitation (microbubbles) to mechanically homogenize targeted tissues. The bubble cloud produced is easily identifiable on ultrasound images and provides feedback and localization of mechanical ablation. The tissue homogenate is composed of acellular liquefied debris which facilitates drainage and resorption. A sharp treatment boundary is achievable in part due to the nonthermal mechanism of tissue effect. Preclinical studies support the localization of ablative effects and general safety of histotripsy, as well as demonstrate that the neurovascular bundle and urinary sphincter are resistant to structural damage. Analysis of the imaging data of the male human pelvis suggests that a perineal approach affords adequate acoustic aperture for prostate treatment. Histotripsy ablation of implanted tumors is feasible without apparent increased risk of inducing metastasis in initial preclinical studies. Histotripsy is a unique focused ultrasound ablative modality that has significant potential as a focal therapy for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu Z, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:726–36.

    Article  PubMed  Google Scholar 

  2. Roberts WW, Hall TL, Ives K, Wolf Jr JS, Fowlkes JB, Cain C. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175:734–8.

    Article  PubMed  Google Scholar 

  3. Parsons JE, Cain CA, Abrams GD, Fowlkes JB. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol. 2006;32:115–29.

    Article  PubMed  Google Scholar 

  4. Xu Z, Fowlkes JB, Ludomirsky A, Cain CA. Investigation of intensity thresholds for ultrasound tissue erosion. Ultrasound Med Biol. 2005;31:1673–82.

    Article  PubMed  Google Scholar 

  5. Winterroth F, Xu Z, Wang T, Wilkinson JE, Fowlkes JB, Roberts WW, Cain CA. Examining and analyzing subcellular morphology of renal tissue treated by histotripsy. Ultrasound Med Biol. 2011;37:78–86.

    Article  PubMed  Google Scholar 

  6. Wu F, Wang Z, Chen W, Bai J, Zhu H, Qiao T. Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J Urol. 2003;170:2237–40.

    Article  PubMed  Google Scholar 

  7. Visioli AG, Rivens IH, ter Haar GR, Horwich A, Huddart RA, Moskovic E, Padhani A, Glees J. Preliminary results of a phase I dose escalation clinical trial using focused ultrasound in the treatment of localized tumours. Eur J Ultrasound. 1999;9:11–8.

    Article  PubMed  CAS  Google Scholar 

  8. Vallencien G, Harouni M, Veillon B, Mombet A, Prapotnich D, Brisset JM, Bougaran J. Focused extracorporeal pyrotherapy: feasibility study in man. J Endourol. 1992;6:173–81.

    Article  Google Scholar 

  9. Kennedy JE, terHaar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76:590–9.

    Article  PubMed  CAS  Google Scholar 

  10. Fry FJ, Kossoff G, Eggleton RC, Dunn F. Threshold ultrasonic dosages for structural changes in the mammalian brain. J Acoust Soc Am. 1970;6:1413–7.

    Article  Google Scholar 

  11. Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:1296–304.

    Article  PubMed  Google Scholar 

  12. Xu Z, Fowlkes JB, Rothman ED, Levin AM, Cain CA. Controlled ultrasound tissue erosion: the role of dynamic interaction between insonation and microbubble activity. J Acoust Soc Am. 2005;117:424–35.

    Article  PubMed  Google Scholar 

  13. Leighton TG. The forced bubble. In: The acoustic bubble. San Diego, CA: Academic Press; 1994. p. 308–12.

    Google Scholar 

  14. Bataille N, Vallancien G, Chopin D. Antitumoral local effect and metastatic risk of focused extracorporeal pyrotherapy on dunning R-3327 tumors. Eur Urol. 1996;29:72–7.

    PubMed  CAS  Google Scholar 

  15. Kohrmann KU, Michel MS, Gaa J, Marlinghaus E, Alken P. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol. 2002;167:2397–403.

    Article  PubMed  Google Scholar 

  16. Marberger M, Schatzl G, Cranston D, Kennedy JE. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int. 2005;95 suppl 2:52–5.

    Article  PubMed  Google Scholar 

  17. Clarke RL, Ter Haar GR. Temperature rise recorded during lesion formation by high-intensity focused ultrasound. Ultrasound Med Biol. 1997;23:299–306.

    Article  PubMed  CAS  Google Scholar 

  18. Kieran K, Hall TL, Parsons JE, Wolf Jr JS, Fowlkes JB, Cain CA, Roberts WW. Refining histotripsy: defining the parameter space for the creation of non-thermal lesions with high intensity pulsed ultrasound in the in vitro kidney. J Urol. 2007;178:672–6.

    Article  PubMed  Google Scholar 

  19. Xu Z, Hall TL, Fowlkes JB, Cain CA. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy). J Acoust Soc Am. 2007;122:229–36.

    Article  PubMed  Google Scholar 

  20. Xu Z, Raghavan M, Hall TL, Chang C, Mycek M, Fowlkes JB, Cain CA. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:2091–101.

    Article  PubMed  Google Scholar 

  21. Xu Z, Hall TL, Fowlkes JB, Cain CA. Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion. J Acoust Soc Am. 2007;121:2421–30.

    Article  PubMed  Google Scholar 

  22. Xu Z, Raghavan M, Hall TL, Chang C, Mycek M, Fowlkes JB, Cain CA. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy – histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1122–32.

    Article  PubMed  Google Scholar 

  23. Lake AM, Hall TL, Kieran K, Fowlkes JB, Cain CA. Histotripsy: minimally invasive technology for prostatic tissue ablation in an in vivo canine model. Urology. 2008;72:682–6.

    Article  PubMed  Google Scholar 

  24. Hall TL, Fowlkes JB, Cain CA. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:569–75.

    Article  PubMed  Google Scholar 

  25. Parsons JE, Cain CE, Fowlkes JB. Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:576–90.

    Article  PubMed  Google Scholar 

  26. Wang T, Xu Z, Winterroth F, Hall TL, Fowlkes JB, Rothman ED, Roberts WW, Cain CA. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy – histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:995–1005.

    Article  PubMed  Google Scholar 

  27. Hall TL, Kieran K, Ives K, Fowlkes JB, Cain CA, Roberts WW. Histotripsy of rabbit renal tissue in vivo: temporal histologic trends. J Endourol. 2007;21:1159–66.

    Article  PubMed  Google Scholar 

  28. Hegarty NJ, Gill IS, Desai MM, Remer EM, O’Malley CM, Kaouk JH. Probe-ablative nephron-sparing surgery: cryoablation versus radiofrequency ablation. Urology. 2006; 68(suppl 1A):7–13.

    Google Scholar 

  29. Hempel CR, Hall TL, Cain CA, Fowlkes JB, Xu Z, Roberts WW. Histotripsy fractionation of prostate tissue: local effects and systemic response in a canine model. J Urol. 2011;185:1484–9.

    Article  PubMed  Google Scholar 

  30. Hall TL, Hempel CR, Wojno K, Xu Z, Cain CA, Roberts WW. Histotripsy of the prostate: dose effects in a chronic canine model. Urology. 2009;74:932–7.

    Article  PubMed  Google Scholar 

  31. Firth AM, Haldane SL. Development of a scale to evaluate postoperative pain in dogs. J Am Vet Med Assoc. 1999;214:651–9.

    PubMed  CAS  Google Scholar 

  32. Wheat JC, Hall TL, Hempel CR, Cain CA, Xu Z, Roberts WW. Prostate histotripsy in an anticoagulated model. Urology. 2010;75:207–11.

    Article  PubMed  Google Scholar 

  33. Lake AM, Xu Z, Cain CA, Wilkinson E, Roberts WW. Renal ablation by histotripsy: does it spare collecting system? J Urol. 2008;179:1150–4.

    Article  PubMed  CAS  Google Scholar 

  34. Styn N, Hall TL, Fowlkes JB, Cain CA, Roberts WW. Histotripsy homogenization of the prostate: thresholds for cavitation damage of periprostatic structures. J Endourol. 2011;25:1531–5.

    Article  PubMed  Google Scholar 

  35. Wang T, Xu Z, Hall TL, Fowlkes JB, Roberts WW, Cain CA. Active focal zone sharpening for high-precision treatment using histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:305–15.

    Article  PubMed  Google Scholar 

  36. Hacker A, Kohrmann KU, Back W, Kraut O, Marlinghaus E, Alken P, Michel MS. Extracorporeal application of high-intensity focused ultrasound for prostatic tissue ablation. BJU Int. 2005;96:71–6.

    Article  PubMed  Google Scholar 

  37. Hall TL, Hempel CR, Sabb BJ, Roberts WW. Acoustic access to the prostate for extracorporeal ultrasound ablation. J Endourol. 2010;24:1875–81.

    Article  PubMed  Google Scholar 

  38. Oosterhof GO, Cornel EB, Smits GA, Debruyne FM, Schalken JA. Influence of high-intensity focused ultrasound on the development of metastases. Eur Urol. 1997;32:91–5.

    PubMed  CAS  Google Scholar 

  39. Wu F, Wang Z, Jin C, Zhang J, Chen W, Bai J, Zou J, Zhu H. Circulating tumor cells in patients with solid malignancy treated with high-intensity focused ultrasound. Ultrasound Med Biol. 2004;30:511–7.

    Article  PubMed  Google Scholar 

  40. Miller DL, Dou C. Contrast-aided diagnostic ultrasound does not enhance lung metastasis in a mouse melanoma tumor model. J Ultrasound Med. 2005;24:349–54.

    PubMed  Google Scholar 

  41. Miller DL, Dou C. The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound. Ultrasound Med Biol. 2006;32:1097–101.

    Article  PubMed  Google Scholar 

  42. Hancock H, Dreher MR, Crawford N, Pollock CB, Shih J, Wood BJ, Hunter K, Frenkel V. Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model. Clin Exp Metastasis. 2009;26:729–38.

    Article  PubMed  Google Scholar 

  43. Zhou L, Yinglu Y. In vivo effect of high energy shock waves on growth and metastasis of the heterografted tumors of nude mice. Chin Med J. 1996;109:157–61.

    PubMed  CAS  Google Scholar 

  44. Gamarra F, Spelsberg F, Dellian M, Goetz AE. Complete local tumor remission after therapy with extra-corporeally applied high-energy shock waves (HESW). Int J Cancer. 1993;55:153–6.

    Article  PubMed  CAS  Google Scholar 

  45. Hoshi S, Orikasa S, Kuwahara A, Suzuki K, Yoshikawa K, Saitoh S, Ohyama C, Satoh M, Kawamura S, Nose M. High energy underwater shock wave treatment on implanted urinary bladder cancer in rabbits. J Urol. 1991;146:439–43.

    PubMed  CAS  Google Scholar 

  46. Geldof AA, DeVoogt HJ, Rao BR. High energy shock waves do not affect either primary tumor growth or metastasis of prostate carcinoma, R3327-MatLyLu. Urol Res. 1989;17:9–12.

    Article  PubMed  CAS  Google Scholar 

  47. Oosterhof GON, Cornel EB, Smits GAHJ, Debruyne FMJ, Schalken JA. The influence of high-energy shock waves on the development of metastases. Ultrasound Med Biol. 1996;22:339–44.

    Article  PubMed  CAS  Google Scholar 

  48. Miller DL, Dou C, Song J. Lithotripter shockwave-induced enhancement of mouse melanoma lung metastasis: dependence on cavitation nucleation. J Endourol. 2004;18:925–9.

    Article  PubMed  Google Scholar 

  49. Xing Y, Lu X, Pua EC, Zhong P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem Biophys Res Commun. 2008;31:645–50.

    Article  Google Scholar 

  50. Hu Z, Yang XY, Liu Y, Sankin GN, Pua EC, Morse MA, Lyerly HK, Clay TM, Zhong P. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007;5:34.

    Article  PubMed  Google Scholar 

  51. Styn NR, Hall TL, Fowlkes JB, Cain CA, Roberts WW. Histotripsy of renal implanted VX-2 tumor in a rabbit model: Investigation of metastases. Urology. 2012;80:724–9.

    Article  PubMed  Google Scholar 

  52. Huber PE, Debus J. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose. Radiat Res. 2001;156:301–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Roberts M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roberts, W.W. (2013). Histotripsy. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics