Skip to main content

Animal Models of Muscular Dystrophy

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1019 Accesses

Abstract

Muscular dystrophy is a severe degenerative disorder of the skeletal muscle, characterized by progressive muscle weakness. One subgroup of this disease is caused by a defect in the genes encoding the components of the dystrophin–glycoprotein complex. Such a defect results in a significant disruption of membrane integrity and/or stability and, consequently, a sustained increase in cytosolic Ca2+ concentration ([Ca2+]i). Abnormal Ca2+ homeostasis, especially under mechanical stress, is believed to be a key molecular event in the pathology of muscular dysgenesis. In this chapter, we will review the animal models of muscular dystrophy useful for understanding the pathophysiology of the disease. Particularly, we will focus on stretch-activated TRP channels, which were reported to have critical pathological significance, and discuss the therapeutic potential of these channels for muscle dystrophy. We will also briefly summarize in vivo and in vitro procedures using dystrophic animal models, isolated muscle fibers, and cultured myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manzur AY, Muntoni F (2009) Diagnosis and new treatments in muscular dystrophies. Postgrad Med J 85:622–630

    CAS  PubMed  Google Scholar 

  2. Ervasti JM, Kahl SD, Campbell KP (1991) Purification of dystrophin from skeletal muscle. J Biol Chem 266:9161–9165

    CAS  PubMed  Google Scholar 

  3. Campbell KP (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679

    Article  CAS  PubMed  Google Scholar 

  4. Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, Durbeej M, Lebakken CS, Ettinger AJ, van der Meulen J, Holt KH, Lim LE, Sanes JR, Davidson BL, Faulkner JA, Williamson R, Campbell KP (1998) Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 142:1461–1471

    Article  CAS  PubMed  Google Scholar 

  5. Nigro V, Okazaki Y, Belsito A, Piluso G, Matsuda Y, Politano L, Nigro G, Ventura C, Abbondanza C, Molinari AM, Acampora D, Nishimura M, Hayashizaki Y, Puca GA (1997) Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 6:601–607

    Article  CAS  PubMed  Google Scholar 

  6. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262

    Article  CAS  PubMed  Google Scholar 

  7. Tinsley JM, Blake DJ, Zuellig RA, Davies KE (1994) Increasing complexity of the dystrophin-associated protein complex. Proc Natl Acad Sci USA 91:8307–8313

    Article  CAS  PubMed  Google Scholar 

  8. Ervasti JM, Campbell KP (1993) Dystrophin and the membrane skeleton. Curr Opin Cell Biol 5:82–87

    Article  CAS  PubMed  Google Scholar 

  9. Dangain J, Vrbova G (1984) Muscle development in mdx mutant mice. Muscle Nerve 7:700–704

    Article  CAS  PubMed  Google Scholar 

  10. Tanabe Y, Esaki K, Nomura T (1986) Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta Neuropathol (Berl) 69:91–95

    Article  CAS  Google Scholar 

  11. Hoffman EP, Morgan JE, Watkins SC, Partridge TA (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99:9–25

    Article  CAS  PubMed  Google Scholar 

  12. Weir AP, Burton EA, Harrod G, Davies KE (2002) A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J Biol Chem 277: 45285–45290

    Article  CAS  PubMed  Google Scholar 

  13. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90:729–738

    Article  CAS  PubMed  Google Scholar 

  14. Kornegay JN, Tuler SM, Miller DM, Levesque DC (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11: 1056–1064

    Article  CAS  PubMed  Google Scholar 

  15. Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, Kettle S, Hung WY, Constantinou CD, Dykstra MJ, Roses AD et al (1992) An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13:115–121

    Article  CAS  PubMed  Google Scholar 

  16. Shimatsu Y, Katagiri K, Furuta T, Nakura M, Tanioka Y, Yuasa K, Tomohiro M, Kornegay JN, Nonaka I, Takeda S (2003) Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 52:93–97

    Article  CAS  PubMed  Google Scholar 

  17. Homburger F, Baker JR, Nixon CW, Wilgram G (1962) New hereditary disease of Syrian hamsters. Primary, generalized polymyopathy and cardiac necrosis. Arch Intern Med 110:660–662

    Article  CAS  PubMed  Google Scholar 

  18. Straub V, Duclos F, Venzke DP, Lee JC, Cutshall S, Leveille CJ, Campbell KP (1998) Molecular pathogenesis of muscle degeneration in the delta-sarcoglycan-deficient hamster. Am J Pathol 153:1623–1630

    Article  CAS  PubMed  Google Scholar 

  19. Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361

    Article  CAS  PubMed  Google Scholar 

  20. Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum Mol Genet 6:831–841

    Article  CAS  PubMed  Google Scholar 

  21. Cote PD, Moukhles H, Lindenbaum M, Carbonetto S (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat Genet 23:338–342

    Article  CAS  PubMed  Google Scholar 

  22. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  CAS  PubMed  Google Scholar 

  23. Clement E, Mercuri E, Godfrey C, Smith J, Robb S, Kinali M, Straub V, Bushby K, Manzur A, Talim B, Cowan F, Quinlivan R, Klein A, Longman C, McWilliam R, Topaloglu H, Mein R, Abbs S, North K, Barkovich AJ, Rutherford M, Muntoni F (2008) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 64:573–582

    Article  CAS  PubMed  Google Scholar 

  24. Clarke NF, Maugenre S, Vandebrouck A, Urtizberea JA, Willer T, Peat RA, Gray F, Bouchet C, Manya H, Vuillaumier-Barrot S, Endo T, Chouery E, Campbell KP, Megarbane A, Guicheney P (2011) Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 19:452–457

    Article  CAS  PubMed  Google Scholar 

  25. Holzfeind PJ, Grewal PK, Reitsamer HA, Kechvar J, Lassmann H, Hoeger H, Hewitt JE, Bittner RE (2002) Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle-eye-brain disorders. Hum Mol Genet 11:2673–2687

    Article  CAS  PubMed  Google Scholar 

  26. Kabaeva Z, Meekhof KE, Michele DE (2011) Sarcolemma instability during mechanical activity in Largemyd cardiac myocytes with loss of dystroglycan extracellular matrix receptor function. Hum Mol Genet 20:3346–3355

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltran-Valero de Bernabe D, Gundesli H, Willer T, Satz JS, Crawford RW, Burden SJ, Kunz S, Oldstone MB, Accardi A, Talim B, Muntoni F, Topaloglu H, Dincer P, Campbell KP (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364:939–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Straub V, Rafael JA, Chamberlain JS, Campbell KP (1997) Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 139:375–385

    Article  CAS  PubMed  Google Scholar 

  30. Gilhuis HJ, ten Donkelaar HJ, Tanke RB, Vingerhoets DM, Zwarts MJ, Verrips A, Gabreels FJ (2002) Nonmuscular involvement in merosin-negative congenital muscular dystrophy. Pediatr Neurol 26:30–36

    Article  PubMed  Google Scholar 

  31. Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT, Sanes JR (1999) Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1:215–220

    Article  CAS  PubMed  Google Scholar 

  32. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA (2001) Novel gene mutations in patients with left ventricular ­noncompaction or Barth syndrome. Circulation 103:1256–1263

    Article  CAS  PubMed  Google Scholar 

  33. Stollberger C, Finsterer J (2004) Subclinical cardiac involvement in myotonic dystrophy. Neuromuscul Disord 14:694–695, author reply 695–696

    Article  PubMed  Google Scholar 

  34. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB, Lisanti MP (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997

    Article  CAS  PubMed  Google Scholar 

  35. Ohsawa Y, Toko H, Katsura M, Morimoto K, Yamada H, Ichikawa Y, Murakami T, Ohkuma S, Komuro I, Sunada Y (2004) Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum Mol Genet 13:151–157

    Article  CAS  PubMed  Google Scholar 

  36. Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL, Campbell KP (2007) Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 117:1805–1813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kuru S, Yasuma F, Wakayama T, Kimura S, Konagaya M, Aoki M, Tanabe M, Takahashi T (2004) A patient with limb girdle muscular dystrophy type 2B (LGMD2B) manifesting cardiomyopathy. Rinsho Shinkeigaku 44:375–378

    PubMed  Google Scholar 

  38. Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, Molkentin JD (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci USA 106: 19023–19028

    Article  CAS  PubMed  Google Scholar 

  39. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Arnett AL, Chamberlain JR, Chamberlain JS (2009) Therapy for neuromuscular disorders. Curr Opin Genet Dev 19:290–297

    Article  CAS  PubMed  Google Scholar 

  41. Angelini C, Fanin M, Pegoraro E, Freda MP, Cadaldini M, Martinello F (1994) Clinical-molecular correlation in 104 mild X-linked muscular dystrophy patients: characterization of sub-clinical phenotypes. Neuromuscul Disord 4:349–358

    Article  CAS  PubMed  Google Scholar 

  42. Guerron AD, Rawat R, Sali A, Spurney CF, Pistilli E, Cha HJ, Pandey GS, Gernapudi R, Francia D, Farajian V, Escolar DM, Bossi L, Becker M, Zerr P, de la Porte S, Gordish-Dressman H, Partridge T, Hoffman EP, Nagaraju K (2010) Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy. PLoS One 5:e11220

    Article  PubMed Central  PubMed  Google Scholar 

  43. Rotundo IL, Faraso S, De Leonibus E, Nigro G, Vitiello C, Lancioni A, Di Napoli D, Castaldo S, Russo V, Russo F, Piluso G, Auricchio A, Nigro V (2011) Worsening of cardiomyopathy using deflazacort in an animal model rescued by gene therapy. PLoS One 6:e24729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bauer R, Blain A, Greally E, Lochmuller H, Bushby K, MacGowan GA, Straub V (2010) Attenuation of adverse cardiac effects in prednisolone-treated delta-sarcoglycan-deficient mice by mineralocorticoid-receptor-antagonism. Neuromuscul Disord 20:21–28

    Article  PubMed  Google Scholar 

  45. Parsons SA, Millay DP, Sargent MA, Naya FJ, McNally EM, Sweeney HL, Molkentin JD (2007) Genetic disruption of calcineurin improves skeletal muscle pathology and cardiac disease in a mouse model of limb-girdle muscular dystrophy. J Biol Chem 282:10068–10078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Iwata Y, Nakamura H, Mizuno Y, Yoshida M, Ozawa E, Shigekawa M (1993) Defective association of dystrophin with sarcolemmal glycoproteins in the cardiomyopathic hamster heart. FEBS Lett 329:227–231

    Article  CAS  PubMed  Google Scholar 

  47. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967

    Article  CAS  PubMed  Google Scholar 

  48. Iwata Y, Katanosaka Y, Shijun Z, Kobayashi Y, Hanada H, Shigekawa M, Wakabayashi S (2005) Protective effects of Ca(2+) handling drugs against abnormal Ca(2+) homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol 70:740–751

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura TY, Iwata Y, Sampaolesi M, Hanada H, Saito N, Artman M, Coetzee WA, Shigekawa M (2001) Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. Am J Physiol Cell Physiol 281:C690–C699

    CAS  PubMed  Google Scholar 

  50. Brown RH Jr (1997) Dystrophin-associated proteins and the muscular dystrophies. Annu Rev Med 48:457–466

    Article  CAS  PubMed  Google Scholar 

  51. Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955

    Article  CAS  PubMed  Google Scholar 

  52. Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T (2001) Alteration in calcium handling at the ­subcellular level in mdx myotubes. J Biol Chem 276:4647–4651

    Article  CAS  PubMed  Google Scholar 

  53. Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in ­normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79

    Article  CAS  PubMed  Google Scholar 

  54. Vandebrouck C, Duport G, Raymond G, Cognard C (2002) Hypotonic medium increases calcium permeant channels activity in human normal and dystrophic myotubes. Neurosci Lett 323:239–243

    Article  CAS  PubMed  Google Scholar 

  55. Franco-Obregon A Jr, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481(Pt 2):299–309

    CAS  PubMed  Google Scholar 

  56. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170

    Article  CAS  PubMed  Google Scholar 

  57. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    Article  CAS  PubMed  Google Scholar 

  58. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  CAS  PubMed  Google Scholar 

  61. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  CAS  PubMed  Google Scholar 

  62. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:1097–1103

    Article  CAS  PubMed  Google Scholar 

  63. Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255

    Article  CAS  PubMed  Google Scholar 

  64. Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD (2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 121:1044–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Morine KJ, Sleeper MM, Barton ER, Sweeney HL (2010) Overexpression of SERCA1a in the mdx diaphragm reduces susceptibility to contraction-induced damage. Hum Gene Ther 21:1735–1739

    Article  CAS  PubMed  Google Scholar 

  66. Menke A, Jockusch H (1991) Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature 349:69–71

    Article  CAS  PubMed  Google Scholar 

  67. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  CAS  PubMed  Google Scholar 

  68. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18:824–834

    CAS  PubMed  Google Scholar 

  69. Zanou N, Iwata Y, Schakman O, Lebacq J, Wakabayashi S, Gailly P (2009) Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett 583:3600–3604

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iwata, Y., Wakabayashi, S. (2012). Animal Models of Muscular Dystrophy. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics