Skip to main content

The Effect of Diet on Protein Modification by Ethanol Metabolites

  • Chapter
  • First Online:
Alcohol, Nutrition, and Health Consequences

Part of the book series: Nutrition and Health ((NH))

  • 3702 Accesses

Abstract

Alcohol (ethanol) is the most widely abused drug in Western societies and, as such, is a major cause of morbidity and mortality, leading to major social and economic costs. Despite an intensive research effort over many years, the main mechanisms by which alcohol exerts its toxicity remain largely elusive or unclear. This seems strange for such a simple molecule which has been associated with disease since at least Roman times. However, what is becoming clear is that alcohol-related tissue injury and disease is clearly multifactorial in nature, with some damage by direct toxicity while other damage occurs through indirect mechanisms. Further, it appears that at least some individuals appear to be genetically predisposed to injury, particularly to the liver, that gender can play a role, and that dietary components can influence the severity of the injury. The main tissues affected by long-term alcohol abuse include the liver, brain, skeletal muscle, cardiac muscle and the pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harper C, Kril J. An introduction to alcohol-induced brain damage and its causes. Alcohol Alcohol. 1994;2(Suppl):237–43.

    CAS  Google Scholar 

  2. Harper C, Kril J. If you drink your brain will shrink. Neuropathological considerations. Alcohol Alcohol Suppl. 1991;1:375–80.

    PubMed  CAS  Google Scholar 

  3. Harper C, Kril J. Pathological changes in alcoholic brain shrinkage. Med J Aust. 1986;144:3–4.

    PubMed  CAS  Google Scholar 

  4. Harper C, Kril J. Brain atrophy in chronic alcoholic patients: a quantitative pathological study. J Neurol Neurosurg Psychiatry. 1985;48:211–7.

    PubMed  CAS  Google Scholar 

  5. Ryabinin AE. Role of hippocampus in alcohol-induced memory impairment: implications from behavioral and immediate early gene studies. Psychopharmacol (Berlin). 1998;139:34–43.

    CAS  Google Scholar 

  6. Pratt OE, Rooprai HK, Shaw GK, Thomson AD. The genesis of alcoholic brain tissue injury. Alcohol Alcohol. 1990;25:217–30.

    PubMed  CAS  Google Scholar 

  7. Fadda F, Rossetti ZL. Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol. 1998;56:385–431.

    PubMed  CAS  Google Scholar 

  8. Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998;57:101–10.

    PubMed  CAS  Google Scholar 

  9. Hall PM. Pathological spectrum of alcoholic liver disease. In: Hall PM, editor. Alcoholic liver disease: pathology and pathogenesis. London: Edward Arnold; 1995. p. 41–68.

    Google Scholar 

  10. Klassen LW, Tuma D, Sorrell MF. Immune mechanisms of alcohol-induced liver disease. Hepatology. 1995;22:355–7.

    PubMed  CAS  Google Scholar 

  11. Martin F, Ward K, Slavin G, Levi J, Peters TJ. Alcoholic skeletal myopathy, a clinical and pathological study. Q J Med. 1985;55:233–51.

    PubMed  CAS  Google Scholar 

  12. Reilly ME, Preedy VR, Peters TJ. Investigations into the toxic effects of alcohol on skeletal muscle. Adverse Drug React Toxicol Rev. 1995;14:117–50.

    PubMed  CAS  Google Scholar 

  13. Preedy VR, Salisbury JR, Peters TJ. Alcoholic muscle disease: features and mechanisms. J Pathol. 1994;173:309–15.

    PubMed  CAS  Google Scholar 

  14. Preedy VR, Siddiq T, Why H, Richardson PJ. The deleterious effects of alcohol on the heart: involvement of protein turnover. Alcohol Alcohol. 1994;29:141–7.

    PubMed  CAS  Google Scholar 

  15. Preedy VR, Peters TJ, Patel VB, Miell JP. Chronic alcoholic myopathy: transcription and translational alterations. FASEB J. 1994;8:1146–51.

    PubMed  CAS  Google Scholar 

  16. Preedy VR, Adachi J, Asano M, et al. Free radicals in alcoholic myopathy: indices of damage and preventive studies. Free Radic Biol Med. 2002;32:683–7.

    PubMed  CAS  Google Scholar 

  17. Marchesini G, Zoli M, Angiolini A, Dondi C, Bianchi FB, Pisi E. Muscle protein breakdown in liver cirrhosis and the role of altered carbohydrate metabolism. Hepatology. 1981;1:294–9.

    PubMed  CAS  Google Scholar 

  18. Richardson PJ, Patel VB, Preedy VR. Alcohol and the myocardium. Novartis Found Symp. 1998;216:35–45. discussion 45–50.

    PubMed  CAS  Google Scholar 

  19. Klein H, Harmjanz D. Effect of ethanol infusion on the ultrastructure of human myocardium. Postgrad Med J. 1975;51:325–9.

    PubMed  CAS  Google Scholar 

  20. Hibbs RG, Ferrans VJ, Walsh JJ, Burch GE. Electron microscopic observations on lysosomes and related cytoplasmic components of normal and pathological cardiac muscle. Anat Rec. 1965;153:173–85.

    PubMed  CAS  Google Scholar 

  21. Richardson PJ, Wodak AD, Atkinson L, Saunders JB, Jewitt DE. Relation between alcohol intake, myocardial enzyme activity, and myocardial function in dilated cardiomyopathy. Evidence for the concept of alcohol induced heart muscle disease. Br Heart J. 1986;56:165–70.

    PubMed  CAS  Google Scholar 

  22. Spodick DH, Pigott VM, Chirife R. Preclinical cardiac malfunction in chronic alcoholism. Comparison with matched normal controls and with alcoholic cardiomyopathy. N Engl J Med. 1972;287:677–80.

    PubMed  CAS  Google Scholar 

  23. Wu CF, Sudhaker M, Ghazanfar J, Ahmed SS, Regan TJ. Preclinical cardiomyopathy in chronic alcoholics: a sex difference. Am Heart J. 1976;91:281–6.

    PubMed  CAS  Google Scholar 

  24. Ren J, Brown RA. Influence of chronic alcohol ingestion on acetaldehyde-induced depression of rat cardiac contractile function. Alcohol Alcohol. 2000;35:554–60.

    PubMed  CAS  Google Scholar 

  25. Lieber CS. Ethnic and gender differences in ethanol metabolism. Alcohol Clin Exp Res. 2000;24:417–8.

    PubMed  CAS  Google Scholar 

  26. Riveros Rosas H, Julian Sanchez A, Pina E. Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch Med Res. 1997;28:453–71.

    PubMed  CAS  Google Scholar 

  27. Lieber CS, Leo MA. Metabolism of ethanol and some associated adverse effects on the liver and the stomach. Recent Dev Alcohol. 1998;14:7–40.

    PubMed  CAS  Google Scholar 

  28. Yin SJ, Han CL, Lee AI, Wu CW. Human alcohol dehydrogenase family. Functional classification, ethanol/retinol metabolism, and medical implications. Adv Exp Med Biol. 1999;463:265–74.

    PubMed  CAS  Google Scholar 

  29. Yoshida A, Hsu LC, Yasunami M. Genetics of human alcohol-metabolising enzymes. Prog Nucleic Acid Res Mol Biol. 1991;40:255–87.

    PubMed  CAS  Google Scholar 

  30. Lieber CS. Metabolism of ethanol: an update. In: Hall PM, editor. Alcoholic liver disease. London: Edward Arnold; 1995. p. 3–16.

    Google Scholar 

  31. Teschke R, Hasumura Y, Joly JG, Lieber CS. Microsomal ethanol-oxidizing system (MEOS): purification and properties of a rat liver system free of catalase and alcohol dehydrogenase. Biochem Biophys Res Commun. 1972;49:1187–93.

    PubMed  CAS  Google Scholar 

  32. Ryan DE, Ramanathan L, Iida S, et al. Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J Biol Chem. 1985;260:6385–93.

    PubMed  CAS  Google Scholar 

  33. Koop DR, Morgan ET, Tarr GE, Coon MJ. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J Biol Chem. 1982;257:8472–80.

    PubMed  CAS  Google Scholar 

  34. Wrighton SA, Campanile C, Thomas PE, et al. Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat. Mol Pharmacol. 1986;29:405–10.

    PubMed  CAS  Google Scholar 

  35. Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J. Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 1999;8:137–46.

    PubMed  CAS  Google Scholar 

  36. Perozich J, Nicholas H, Lindahl R, Hempel J. The big book of aldehyde dehydrogenase sequences. An overview of the extended family. Adv Exp Med Biol. 1999;463:1–7.

    PubMed  CAS  Google Scholar 

  37. Ziegler TL, Vasiliou V. Aldehyde dehydrogenase gene superfamily. The 1998 update. Adv Exp Med Biol. 1999;463:255–63.

    PubMed  CAS  Google Scholar 

  38. Irving MG, Simpson SJ, Brooks WM, Holmes RS, Dodrell DM. Application of the reverse DEPT polarization-transfer pulse sequence to monitor in vitro and in vivo metabolism of 13 C-ethanol by 1 H-NMR spectroscopy. Int J Biochem. 1985;17:471–8.

    PubMed  CAS  Google Scholar 

  39. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    PubMed  CAS  Google Scholar 

  40. Zimatkin SM, Deitrich RA. Ethanol metabolism in the brain. Addict Biol. 1997;2:387–99.

    CAS  Google Scholar 

  41. Chernikevich IP, Lomeko IE, Yoskoboyev AI, Ostrovsky YM. Evidence on the presence of alcohol dehydrogenase in rat and bovine brain. Neurokhimia. 1984;3:130–8.

    CAS  Google Scholar 

  42. Raskin NH, Sokoloff L. Enzymes catalysing ethanol metabolism in neural and somatic tissues of the rat. J Neurochem. 1972;19:273–82.

    PubMed  CAS  Google Scholar 

  43. Beisswender TV, Holmquist B, Vallee BL. CADH is the sole form of alcohol dehydrogenase of mammalian brains: implications and inferences. Proc Natl Acad Sci USA. 1985;82:8369–73.

    Google Scholar 

  44. Giri PR, Linnoila M, O’Neil JB, Goldman D. Distribution and possible metabolic role of type III alcohol dehydrogenase in the human brain. Brain Res. 1989;481:131–41.

    PubMed  CAS  Google Scholar 

  45. Sasame HA, Ames MM, Nelson SD. Cytochrome P450 and NADPH cytochrome c reductase in rat brain: formation of reactive catechol metabolites. Biochem Biophys Res Commun. 1977;78:919–26.

    PubMed  CAS  Google Scholar 

  46. Hansson T, Tinberg N, Ingelman-Sunberg M, Kuhler C. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience. 1990;34:451–63.

    PubMed  CAS  Google Scholar 

  47. Oshino N, Oshino R, Chance B. The characteristics of the ‘perioxidatic’ reaction of catalse in ethanol oxidation. Biochem J. 1973;131:555–67.

    PubMed  CAS  Google Scholar 

  48. Cohen G, Sinet PM, Heikkila R. Ethanol oxidation by rat brain in vivo. Alcohol Clin Exp Res. 1980;4:366–70.

    PubMed  CAS  Google Scholar 

  49. Novikoff AB, Novikoff PM. Microperoxisomes. J Histochem Cytochem. 1973;21:963–6.

    PubMed  CAS  Google Scholar 

  50. Gaunt GL, de Duve C. Subcellular distribution of D-amino acid oxidase and catalse in rat brain. J Neurochem. 1976;26:749–59.

    PubMed  CAS  Google Scholar 

  51. Brannan TS, Maker HS, Raes TP. Regional distribution of catalase in adult rat brain. J Neurochem. 1981;86:307–9.

    Google Scholar 

  52. Zimatkin SM, Lindros KO. Comparison of catalase and aldehyde dehyrogenase distribution in rat brain: are aminergic neurons affetced by acetaldehyde? Alcohol Clin Exp Res. 1994;19:35. A Abstr. 35.25.

    Google Scholar 

  53. Ryzlak MT, Pietruszko R. Human brain “high Km” aldehyde dehydrogenase: purification, characterization, and identification as NAD+-dependent succinic semialdehyde dehydrogenase. Arch Biochem Biophys. 1988;266:386–96.

    PubMed  CAS  Google Scholar 

  54. Ryzlak MT, Pietruszko R. Human brain glyceraldehyde-3-phosphate dehydrogenase, succinic semialdehyde dehydrogenase and aldehyde dehydrogenase isozymes: substrate specificity and sensitivity to disulfiram. Alcohol Clin Exp Res. 1989;13:755–61.

    PubMed  CAS  Google Scholar 

  55. Nagasawa HT, Alexander CS. Ethanol metabolism by the rat heart and alcohol dehydrogenase activity. Can J Biochem. 1976;54:539–45.

    PubMed  CAS  Google Scholar 

  56. Soffia F, Penna M. Ethanol metabolism by rat heart homogenates. Alcohol. 1987;4:45–8.

    PubMed  CAS  Google Scholar 

  57. Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet. 2000;355:979–83.

    PubMed  CAS  Google Scholar 

  58. Riggs JE. Alcohol-associated rhabdomyolisis: ethanol induction of cytochrome P450 may potentiate myotoxicity. Clin Neuropharmacol. 1998;21:363–4.

    PubMed  CAS  Google Scholar 

  59. O’Donell JP. The reaction of amines with carbonyls; its significance in the nonenzymatic metabolism of xenobiotics. Drug Metab Rev. 1982;13:123–59.

    Google Scholar 

  60. Donohue Jr TM, Tuma DJ, Sorrell MF. Binding of metabolically derived acetaldehyde to hepatic proteins in vitro. Lab Invest. 1983;49:226–9.

    PubMed  CAS  Google Scholar 

  61. Tuma DJ, Newman MR, Donohue Jr TM, Sorrell MF. Covalent binding of acetaldehyde to proteins: participation of lysine residues. Alcohol Clin Exp Res. 1987;11:579–84.

    PubMed  CAS  Google Scholar 

  62. Fowles LF, Beck E, Worrall S, Shanley BC, de Jersey J. The formation and stability of imidazolidinone adducts from acetaldehyde and model peptides. A kinetic study with implications for protein modification in alcohol abuse. Biochem Pharmacol. 1996;51:1259–67.

    PubMed  CAS  Google Scholar 

  63. Sillanaukee P, Hurme L, Tuominen J, Ranta E, Nikkari S, Seppa K. Structural characterisation of acetaldehyde adducts formed by a synthetic peptide mimicking the N-terminus of the hemoglobin beta-chain under reducing and nonreducing conditions. Eur J Biochem. 1996;240:30–6.

    PubMed  CAS  Google Scholar 

  64. Klassen LW, Tuma DJ, Sorrell MF, McDonald TL, DeVasure JM, Thiele GM. Detection of reduced acetaldehyde protein adducts using a unique monoclonal antibody. Alcohol Clin Exp Res. 1994;18:164–71.

    PubMed  CAS  Google Scholar 

  65. Worrall S, de Jersey J, Wilce PA. Comparison of the formation of proteins modified by direct and indirect ethanol metabolites in the liver and blood of rats fed the Lieber-DeCarli liquid diet. Alcohol Alcohol. 2000;35:164–70.

    PubMed  CAS  Google Scholar 

  66. Graham V, Worrall S, de Jersey J. Analysis of adducts formed between acetaldehyde and thiol-containing ­peptides. Alcohol Clin Exp Res. 1998;23(Supl 3):174A.

    Google Scholar 

  67. Hoberman HD. Synthesis of 5-deoxy-D-xylulose-1-phosphate by human erythrocytes. Biochem Biophys Res Commun. 1979;90:757–63.

    PubMed  CAS  Google Scholar 

  68. Hoberman HD. Adduct formation between hemoglobin and 5-deoxy-D-xylulose-1-phosphate. Biochem Biophys Res Commun. 1979;90:764–8.

    PubMed  CAS  Google Scholar 

  69. Crawford DL, Yu TC, Sinnhuber RO. Reaction of malondialdehyde with glycine. J Agric Food Chem. 1966;14:182–4.

    CAS  Google Scholar 

  70. Nair V, Vietti DE, Cooper CS. Degenerative chemistry of malondialdehyde. Structure, stereochemistry and kinetics of formation of enaminals from reaction with amino acids. J Am Chem Soc. 1981;103:3030–96.

    CAS  Google Scholar 

  71. Kikugawa K, Takayanagi K, Watanabe S. Polylysine modified with malondialdehyde, hydroperoxylinoleic acid and monofunctional aldehydes. Chem Pharm Bull. 1985;33:5437–44.

    CAS  Google Scholar 

  72. Buttkus H. Reaction of cysteine and methionine with malondialdehyde. J Am Oil Chem Soc. 1966;46:88–93.

    Google Scholar 

  73. Jurgens G, Lang J, Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta. 1986;875:103–14.

    PubMed  CAS  Google Scholar 

  74. Tuma DJ, Thiele GM, Xu D, Klassen LW, Sorrell MF. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology. 1996;23:872–80.

    PubMed  CAS  Google Scholar 

  75. Kearley ML, Patel A, Chien J, Tuma DJ. Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13 C NMR spectroscopy. Chem Res Toxicol. 1999;12:100–5.

    PubMed  CAS  Google Scholar 

  76. Tuma DJ, Kearley ML, Thiele GM, et al. Elucidation of reaction scheme describing malondialdehyde-acetaldehyde-protein adduct formation. Chem Res Toxicol. 2001;14:822–32.

    PubMed  CAS  Google Scholar 

  77. Medina VA, Donohue Jr TM, Sorrell MF, Tuma DJ. Covalent binding of acetaldehyde to hepatic proteins during ethanol oxidation. J Lab Clin Med. 1985;105:5–10.

    PubMed  CAS  Google Scholar 

  78. Behrens UJ, Hoerner M, Lasker JM, Lieber CS. Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo. Biochem Biophys Res Commun. 1988;154:584–90.

    PubMed  CAS  Google Scholar 

  79. Lin RC, Fillenwarth MJ, Minter R, Lumeng L. Formation of the 37-kD protein-acetaldehyde adduct in primary cultured rat hepatocytes exposed to alcohol. Hepatology. 1990;11:401–7.

    PubMed  CAS  Google Scholar 

  80. Lin RC, Lumeng L. Further studies on the 37 kD liver protein-acetaldehyde adduct that forms in vivo during chronic alcohol ingestion. Hepatology. 1989;10:807–14.

    PubMed  CAS  Google Scholar 

  81. Lin RC, Lumeng L. Formation of the 37KD protein-acetaldehyde adduct in liver during alcohol treatment is dependent on alcohol dehydrogenase activity. Alcohol Clin Exp Res. 1990;14:766–70.

    PubMed  CAS  Google Scholar 

  82. Lin RC, Lumeng L. Formation of the 37KD liver protein-acetaldehyde adduct in vivo and in vitro. Alcohol Alcohol Suppl. 1991;1:265–9.

    PubMed  CAS  Google Scholar 

  83. Zhu Y, Fillenwarth MJ, Crabb D, Lumeng L, Lin RC. Identification of the 37-kd rat liver protein that forms an acetaldehyde adduct in vivo as D4-3-ketosteroid 5 beta-reductase. Hepatology. 1996;23:115–22.

    PubMed  CAS  Google Scholar 

  84. Worrall S, de Jersey J, Shanley BC, Wilce PA. Detection of stable acetaldehyde-modified proteins in the livers of ethanol-fed rats. Alcohol Alcohol. 1991;26:437–44.

    PubMed  CAS  Google Scholar 

  85. Yokoyama H, Ishii H, Nagata S, et al. Heterogeneity of hepatic acetaldehyde adducts in guinea-pigs after chronic ethanol administration: an immunohistochemical analysis with monoclonal and polyclonal antibodies against acetaldehyde-modified protein epitopes. Alcohol Alcohol. 1993;1a(Suppl):91–7.

    CAS  Google Scholar 

  86. Nicholls RM, Fowles LF, Worrall S, de Jersey J, Wilce PA. Distribution and turnover of acetaldehyde-modified proteins in liver and blood of ethanol-fed rats. Alcohol Alcohol. 1994;29:149–57.

    PubMed  CAS  Google Scholar 

  87. Niemela O, Juvonen T, Parkkila S. Immunohistochemical demonstration of acetaldehyde-modified epitopes in human liver after alcohol consumption. J Clin Invest. 1991;87:1367–74.

    PubMed  CAS  Google Scholar 

  88. Paradis V, Scoazec JY, Kollinger M, et al. Cellular and subcellular localization of acetaldehyde-protein adducts in liver biopsies from alcoholic patients. J Histochem Cytochem. 1996;44:1051–7.

    PubMed  CAS  Google Scholar 

  89. Holstege A, Bedossa P, Poynard T, et al. Acetaldehyde-modified epitopes in liver biopsy specimens of alcoholic and nonalcoholic patients: localization and association with progression of liver fibrosis [published erratum appears in Hepatology 1994 Dec;20(6):1664]. Hepatology. 1994;19:367–74.

    PubMed  CAS  Google Scholar 

  90. Lin RC, Zhou FC, Fillenwarth MJ, Lumeng L. Zonal distribution of protein-acetaldehyde adducts in the liver of rats fed alcohol for long periods. Hepatology. 1993;18:864–9.

    PubMed  CAS  Google Scholar 

  91. Albano E, Tomasi A, Goria Gatti L, Dianzani MU. Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Chem Biol Interact. 1988;65:223–34.

    PubMed  CAS  Google Scholar 

  92. Albano E, Tomasi A, Ingelman-Sundberg M. Spin trapping of alcohol-derived radicals in microsomes and reconstituted systems by electron spin resonance. Methods Enzymol. 1994;233:117–27.

    PubMed  CAS  Google Scholar 

  93. Albano E, Tomasi A, Persson JO, et al. Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem Pharmacol. 1991;41:1895–902.

    PubMed  CAS  Google Scholar 

  94. Iimuro Y, Bradford BU, Gao W, et al. Detection of alpha-hydroxyethyl free radical adducts in the pancreas after chronic exposure to alcohol in the rat. Mol Pharmacol. 1996;50:656–61.

    PubMed  CAS  Google Scholar 

  95. Clot P, Albano E, Eliasson E, et al. Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology. 1996;111:206–16.

    PubMed  CAS  Google Scholar 

  96. Clot P, Tabone M, Arico S, Albano E. Monitoring oxidative damage in patients with liver cirrhosis and different daily alcohol intake. Gut. 1994;35:1637–43.

    PubMed  CAS  Google Scholar 

  97. Houglum K, Filip M, Witztum JL, Chojkier M. Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J Clin Invest. 1990;86:1991–8.

    PubMed  CAS  Google Scholar 

  98. Kamimura S, Gaal K, Britton RS, Bacon BR, Triadafilopoulos G, Tsukamoto H. Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology. 1992;16:448–53.

    PubMed  CAS  Google Scholar 

  99. Li CJ, Nanji AA, Siakotos AN, Lin RC. Acetaldehyde-modified and 4-hydroxynonenal-modified proteins in the livers of rats with alcoholic liver disease. Hepatology. 1997;26:650–7.

    PubMed  CAS  Google Scholar 

  100. Niemela O, Parkkila S, Yla Herttuala S, Villanueva J, Ruebner B, Halsted CH. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology. 1995;22:1208–14.

    PubMed  CAS  Google Scholar 

  101. Niemela O, Parkkila S, Pasanen M, Iimur Y, Bradford B, Thurman RG. Early alcoholic liver injury: formation of protein adducts with acetaldehyde and lipid peroxidation products, and expression of CYP2E1 and CYP3A. Alcohol Clin Exp Res. 1998;22:2118–24.

    PubMed  CAS  Google Scholar 

  102. Ohhira M, Ohtake T, Matsumoto A, et al. Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver diseases. Alcohol Clin Exp Res. 1998;22:145s–9.

    PubMed  CAS  Google Scholar 

  103. Xu D, Thiele GM, Kearley ML, et al. Epitope characterization of malondialdehyde-acetaldehyde adducts using an enzyme-linked immunosorbent assay. Chem Res Toxicol. 1997;10:978–86.

    PubMed  CAS  Google Scholar 

  104. Worrall S, Niemela O, Parkkila S, Peters TJ, Preedy VR. Protein adducts in type I and type II fibre predominant muscles of the ethanol-fed rat: preferential localisation in the sarcolemmal and subsarcolemmal region. Eur J Clin Invest. 2001;31:723–30.

    PubMed  CAS  Google Scholar 

  105. Niemela O, Parkkila S, Worrall S, Emery PW, Preedy VR. Generation of aldehyde-derived protein modifications in ethanol-exposed heart. Alcohol Clin Exp Res. 2003;27:1987–92.

    PubMed  Google Scholar 

  106. Worrall S, Richardson PJ, Preedy VR. Experimental heart muscle damage in alcohol feeding is associated with increased amounts of reduced- and unreduced-acetaldehyde and malondialdehyde-acetaldehyde protein adducts. Addict Biol. 2000;5:421–7.

    PubMed  CAS  Google Scholar 

  107. Rintala J, Jaatinen P, Parkkila S, Kiianmaa K, Hervonen A, Niemela O. Evidence of acetaldehyde-protein adduct formation in rat brain after life-long consumption of ethanol. Alcohol Alcohol. 2000;35:458–63.

    PubMed  CAS  Google Scholar 

  108. Upadhya SC, Ravindranath V. Detection and localization of protein-acetaldehyde adducts in rat brain after chronic ethanol treatment. Alcohol Clin Exp Res. 2002;26:856–63.

    PubMed  CAS  Google Scholar 

  109. Nakamura K, Iwahashi K, Itoh M, et al. Immunohistochemical study on acetaldehyde adducts in alcohol-fed mice. Alcohol Clin Exp Res. 2000;24:93s–6.

    PubMed  CAS  Google Scholar 

  110. Nakamura K, Iwahashi K, Furukawa A, et al. Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol. 2003;77:591–3.

    PubMed  CAS  Google Scholar 

  111. Perry A, Dodd P, Worrall S. Detection of elevated protein modification in alcoholic cerebellar degeneration. Alcohol Clin Exp Res. 2006;30:149A–149A.

    Google Scholar 

  112. Mauch TJ, Donohue Jr TM, Zetterman RK, Sorrell MF, Tuma DJ. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology. 1986;6:263–9.

    PubMed  CAS  Google Scholar 

  113. Mauch TJ, Tuma DJ, Sorrell MF. The binding of acetaldehyde to the active site of ribonuclease: alterations in catalytic activity and effects of phosphate. Alcohol Alcohol. 1987;22:103–12.

    PubMed  CAS  Google Scholar 

  114. Xu DS, Jennett RB, Smith SL, Sorrell MF, Tuma DJ. Covalent interactions of acetaldehyde with the actin/microfilament system. Alcohol Alcohol. 1989;24:281–9.

    PubMed  CAS  Google Scholar 

  115. Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178–85.

    PubMed  Google Scholar 

  116. McKinnon G, de Jersey J, Shanley B, Ward L. The reaction of acetaldehyde with brain microtubular proteins: formation of stable adducts and inhibition of polymerization. Neurosci Lett. 1987;79:163–8.

    PubMed  CAS  Google Scholar 

  117. Tuma DJ, Jennett RB, Sorrell MF. The interaction of acetaldehyde with tubulin. Ann N Y Acad Sci. 1987;492:277–86.

    PubMed  CAS  Google Scholar 

  118. Smith SL, Jennett RB, Sorrell MF, Tuma DJ. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts. Biochem Pharmacol. 1992;44:65–72.

    PubMed  CAS  Google Scholar 

  119. Smith SL, Jennett RB, Sorrell MF, Tuma DJ. Acetaldehyde substoichiometrically inhibits bovine neurotubulin polymerization. J Clin Invest. 1989;84:337–41.

    PubMed  CAS  Google Scholar 

  120. Luduena RF, Roach MC, Jordan MA, Murphy DB. Different reactivities of brain and erythrocyte tubulins toward a sulfhydryl group-directed reagent that inhibits microtubule assembly. J Biol Chem. 1985;260:1257–64.

    PubMed  CAS  Google Scholar 

  121. Baraona E, Leo MA, Borowsky SA, Lieber CS. Alcoholic hepatomegaly: accumulation of protein in the liver. Science. 1975;190:794–5.

    PubMed  CAS  Google Scholar 

  122. Baraona E, Matsuda Y, Pikkarainen P, Finkelman F, Lieber CS. Effects of ethanol on hepatic protein secretion and microtubules. Possible mediation by acetaldehyde. Curr Alcohol. 1981;8:421–34.

    PubMed  CAS  Google Scholar 

  123. Matsuda Y, Takase S, Takada A, Sato H, Yasuhara M. Comparison of ballooned hepatocytes in alcoholic and non-alcoholic liver injury in rats. Alcohol. 1985;2:303–8.

    PubMed  CAS  Google Scholar 

  124. Matsuda Y, Takada A, Kanayama R, Takase S. Changes of hepatic microtubules and secretory proteins in human alcoholic liver disease. Pharmacol Biochem Behav. 1983;18(Suppl 1):479–82.

    PubMed  Google Scholar 

  125. Tuma DJ, Zetterman RK, Sorrell MF. Inhibition of glycoprotein secretion by ethanol and acetaldehyde in rat liver slices. Biochem Pharmacol. 1980;29:35–8.

    PubMed  CAS  Google Scholar 

  126. Sorrell MF, Tuma DJ. Selective impairment of glycoprotein metabolism by ethanol and acetaldehyde in rat liver slices. Gastroenterology. 1978;75:200–5.

    PubMed  CAS  Google Scholar 

  127. Sorrell MF, Nauss JM, Donohue Jr TM, Tuma DJ. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat. Gastroenterology. 1983;84:580–6.

    PubMed  CAS  Google Scholar 

  128. Tuma DJ, Casey CA, Sorrell MF. Effects of ethanol on hepatic protein trafficking: impairment of receptor-mediated endocytosis. Alcohol Alcohol. 1990;25:117–25.

    PubMed  CAS  Google Scholar 

  129. Yamada S, Mak KM, Lieber CS. Chronic ethanol consumption alters rat liver plasma membranes and potentiates release of alkaline phosphatase. Gastroenterology. 1985;88:1799–806.

    PubMed  CAS  Google Scholar 

  130. Yamada S, Wilson JS, Lieber CS. The effects of ethanol and diet on hepatic and serum gamma-glutamyltranspeptidase activities in rats. J Nutr. 1985;115:1285–90.

    PubMed  CAS  Google Scholar 

  131. Gonzalez Calvin JL, Saunders JB, Williams R. Effects of ethanol and acetaldehyde on hepatic plasma membrane ATPases. Biochem Pharmacol. 1983;32:1723–8.

    PubMed  CAS  Google Scholar 

  132. Pignon JP, Bailey NC, Baraona E, Lieber CS. Fatty acid-binding protein: a major contributor to the ethanol-induced increase in liver cytosolic proteins in the rat. Hepatology. 1987;7:865–71.

    PubMed  CAS  Google Scholar 

  133. Terabayashi H, Kolber MA. The generation of cytotoxic T lymphocytes against acetaldehyde-modified syngeneic cells. Alcohol Clin Exp Res. 1990;14:893–9.

    PubMed  CAS  Google Scholar 

  134. Kolber MA, Terabayashi H. Cytotoxic T lymphocytes can be generated against acetaldehyde-modified syngeneic cells. Alcohol Alcohol. 1991;1(Suppl):277–80.

    CAS  Google Scholar 

  135. Israel Y, Hurwitz E, Niemela O, Arnon R. Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts. Proc Natl Acad Sci USA. 1986;83:7923–7.

    PubMed  CAS  Google Scholar 

  136. Worrall S, De Jersey J, Shanley BC, Wilce PA. Ethanol induces the production of antibodies to acetaldehyde-modified epitopes in rats. Alcohol Alcohol. 1989;24:217–23.

    PubMed  CAS  Google Scholar 

  137. Worrall S, De Jersey J, Shanley BC, Wilce PA. Anti-acetaldehyde adduct antibodies generated by ethanol-fed rats react with reduced and unreduced acetaldehyde-modified proteins. Alcohol Alcohol. 1994;29:43–50.

    PubMed  CAS  Google Scholar 

  138. Tsukamoto H, Horne W, Kamimura S, et al. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest. 1995;96:620–30.

    PubMed  CAS  Google Scholar 

  139. Xu D, Thiele GM, Beckenhauer JL, Klassen LW, Sorrell MF, Tuma DJ. Detection of circulating antibodies to malondialdehyde-acetaldehyde adducts in ethanol-fed rats. Gastroenterology. 1998;115:686–92.

    PubMed  CAS  Google Scholar 

  140. Niemela O, Klajner F, Orrego H, Vidins E, Blendis L, Israel Y. Antibodies against acetaldehyde-modified protein epitopes in human alcoholics. Hepatology. 1987;7:1210–4.

    PubMed  CAS  Google Scholar 

  141. Worrall S, De Jersey J, Shanley BC, Wilce PA. Antibodies against acetaldehyde-modified epitopes: presence in alcoholic, non-alcoholic liver disease and control subjects. Alcohol Alcohol. 1990;25:509–17.

    PubMed  CAS  Google Scholar 

  142. Worrall S, de Jersey J, Shanley BC, Wilce PA. Antibodies against acetaldehyde-modified epitopes: an elevated IgA response in alcoholics. Eur J Clin Invest. 1991;21:90–5.

    PubMed  CAS  Google Scholar 

  143. Worrall S, De Jersey J, Shanley BC, Wilce PA. Alcohol abusers exhibit a higher IgA response to acetaldehyde-modified proteins. Alcohol Alcohol. 1991;1(Suppl):261–4.

    CAS  Google Scholar 

  144. Trudell JR, Ardies CM, Anderson WR. Cross-reactivity of antibodies raised against acetaldehyde adducts of protein with acetaldehyde adducts of phosphatidyl-ethanolamine: possible role in alcoholic cirrhosis. Mol Pharmacol. 1990;38:587–93.

    PubMed  CAS  Google Scholar 

  145. Trudell JR, Ardies CM, Green CE, Allen K. Binding of anti-acetaldehyde IgG antibodies to hepatocytes with an acetaldehyde-phosphatidylethanolamine adduct on their surface. Alcohol Clin Exp Res. 1991;15:295–9.

    PubMed  CAS  Google Scholar 

  146. Koskinas J, Kenna JG, Bird GL, Alexander GJ, Williams R. Immunoglobulin A antibody to a 200-kilodalton cytosolic acetaldehyde adduct in alcoholic hepatitis. Gastroenterology. 1992;103:1860–7.

    PubMed  CAS  Google Scholar 

  147. Brown WR, Kloppel TM. The liver and IgA: immunological, cell biological and clinical implications. Hepatology. 1989;9:763–84.

    PubMed  CAS  Google Scholar 

  148. Yokoyama H, Ishii H, Nagata S, Kato S, Kamegaya K, Tsuchiya M. Experimental hepatitis induced by ethanol after immunization with acetaldehyde adducts. Hepatology. 1993;17:14–9.

    PubMed  CAS  Google Scholar 

  149. Yokoyama H, Nagata S, Moriya S, et al. Hepatic fibrosis produced in guinea pigs by chronic ethanol administration and immunization with acetaldehyde adducts. Hepatology. 1995;21:1438–42.

    PubMed  CAS  Google Scholar 

  150. Worrall S, de Jersey J, Wilce PA. Liver damage in ethanol-fed rats injected with acetaldehyde-modified proteins. Alcohol Alcohol. 1992;27(Suppl 1):74.

    Google Scholar 

  151. Mitchell MC, Herlong HF. Alcohol and nutrition: caloric value, bioenergetics, and relationship to liver damage. Annu Rev Nutr. 1986;6:457–74.

    PubMed  CAS  Google Scholar 

  152. Wassner SJ, Li JB, Sperduto A, Norman ME. Vitamin D deficiency, hypocalcemia, and increased skeletal muscle degradation in rats. J Clin Invest. 1983;72:102–12.

    PubMed  CAS  Google Scholar 

  153. Rimaniol JM, Authier FJ, Chariot P. Muscle weakness in intensive care patients: initial manifestation of vitamin D deficiency. Intensive Care Med. 1994;20:591–2.

    PubMed  CAS  Google Scholar 

  154. Hickish T, Colston KW, Bland JM, Maxwell JD. Vitamin D deficiency and muscle strength in male alcoholics. Clin Sci (Lond). 1989;77:171–6.

    CAS  Google Scholar 

  155. Duane P, Peters TJ. Nutritional status in alcoholics with and without chronic skeletal muscle myopathy. Alcohol Alcohol. 1988;23:271–7.

    PubMed  CAS  Google Scholar 

  156. Urbano Marquez A, Estruch R, Navarro Lopez F, Grau JM, Mont L, Rubin E. The effects of alcoholism on skel et al. and cardiac muscle. N Engl J Med. 1989;320:409–15.

    PubMed  CAS  Google Scholar 

  157. Reilly ME, Patel VB, Peters TJ, Preedy VR. In vivo rates of skeletal muscle protein synthesis in rats are decreased by acute ethanol treatment but are not ameliorated by supplemental alpha-tocopherol. J Nutr. 2000;130:3045–9.

    PubMed  CAS  Google Scholar 

  158. Fernandez Sola J, Garcia G, Elena M, et al. Muscle antioxidant status in chronic alcoholism. Alcohol Clin Exp Res. 2002;26:1858–62.

    PubMed  CAS  Google Scholar 

  159. Hazell AS, Todd KG, Butterworth RF. Mechanisms of neuronal death in Wernicke’s encephalopathy. Metab Brain Dis. 1998;13:97–122.

    PubMed  CAS  Google Scholar 

  160. Cook CC, Hallwood PM, Thomsom AD. B vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol Alcohol. 1998;33:317–36.

    PubMed  CAS  Google Scholar 

  161. Marsano L, McClain CJ. Nutrition and alcoholic liver disease. J Parenter Enteral Nutr. 1991;15:337–44.

    CAS  Google Scholar 

  162. Estruch R, Nicolas JM, Villegas E, Junque A, Urbano-Marquez A. Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol Alcohol. 1993;28:543–50.

    PubMed  CAS  Google Scholar 

  163. Mezey E. Dietary fat and alcoholic liver disease. Hepatology. 1998;28:901–5.

    PubMed  CAS  Google Scholar 

  164. Sorensen TI, Orholm M, Bentsen KD, Hoybye G, Eghoje K, Christoffersen P. Prospective evaluation of alcohol abuse and alcoholic liver injury in men as predictors of development of cirrhosis. Lancet. 1984;2:241–4.

    PubMed  CAS  Google Scholar 

  165. Letteron P, Duchatelle V, Berson A, et al. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers. Gut. 1993;34:409–14.

    PubMed  CAS  Google Scholar 

  166. Lieber CS, DeCarli LM. Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver. Am J Clin Nutr. 1970;23:474–8.

    PubMed  CAS  Google Scholar 

  167. Bloom RJ, Westerfeld WW. The thiobarbituric acid reaction in relation to fatty livers. Arch Biochem Biophys. 1971;145:669–75.

    PubMed  CAS  Google Scholar 

  168. Reinke LA, McCay PB. Spin trapping studies of alcohol-initiated radicals in rat liver: influence of dietary fat. J Nutr. 1997;127:899s–902.

    PubMed  CAS  Google Scholar 

  169. Nanji AA, French SW. Dietary factors and alcoholic cirrhosis. Alcohol Clin Exp Res. 1980;10:271–3.

    Google Scholar 

  170. Tsukamoto H, French SW, Benson N, et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology. 1985;5:224–32.

    PubMed  CAS  Google Scholar 

  171. Tsukamoto H, Towner SJ, Ciofalo LM, French SW. Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatology. 1986;6:814–22.

    PubMed  CAS  Google Scholar 

  172. Nanji AA, Mendenhall CL, French SW. Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin Exp Res. 1989;13:15–9.

    PubMed  CAS  Google Scholar 

  173. Nanji AA, French SW. Dietary linoleic acid is required for development of experimentally induced alcoholic liver injury. Life Sci. 1989;44:223–7.

    PubMed  CAS  Google Scholar 

  174. Morimoto M, Hagbjork AL, Nanji AA, et al. Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis. Alcohol. 1993;10:459–64.

    PubMed  CAS  Google Scholar 

  175. Nanji AA, Yang EK, Fogt F, Sadrzadeh SM, Dannenberg AJ. Medium chain triglycerides and vitamin E reduce the severity of established experimental alcoholic liver disease. J Pharmacol Exp Ther. 1996;277:1694–700.

    PubMed  CAS  Google Scholar 

  176. Nanji AA, Sadrzadeh SM, Yang EK, Fogt F, Meydani M, Dannenberg AJ. Dietary saturated fatty acids: a novel treatment for alcoholic liver disease [see comments]. Gastroenterology. 1995;109:547–54.

    PubMed  CAS  Google Scholar 

  177. Cunningham CC, Sinthusek G, Spach PI, Leathers C. Effect of dietary ethanol and cholesterol on metabolic functions of hepatic mitochondria and microsomes from the monkey, Macaca nemestrina. Alcohol Clin Exp Res. 1981;5:410–6.

    PubMed  CAS  Google Scholar 

  178. Lieber CS, Robins SJ, Li J, et al. Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology. 1994;106:152–9.

    PubMed  CAS  Google Scholar 

  179. Worrall S, Koll M, Paice A, Peters T, Preedy VR. a -Tocopherol decreases hepatic protein adduct formation in alcohol-fed rats. Alcohol Clin Exp Res. 2002;26(Suppl):796.

    Google Scholar 

Download references

Acknowledgements

Adduct formation in alcohol abuse has been part of my scientific life ever since I started my first postdoctoral position. During that time, I have enjoyed working with many academic colleagues and research students. I would particularly like to thank Professor John de Jersey and Associate Professor Peter Wilce for their friendship, help and guidance over the years. I would also like to thank the many research students that have passed through my laboratory during this time. Next, I would like to thank my international collaborators, Professors Dean Tuma and Geoffrey Thiele (University of Nebraska, Omaha) Professor Victor Preedy (King’s College London) and Professor Onni Niemela (Univerity of Oulu, Finland) for enduring the tyranny of distance and working with someone “downunder”. Finally I want to thank my wife, Lindy, and daughters, Lizzie, Jenny and Vikki for their continuing love and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Worrall B.Sc. (Hons), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Worrall, S. (2013). The Effect of Diet on Protein Modification by Ethanol Metabolites. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics