Skip to main content

Whole Cell Impedance Biosensoring Devices

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

  • 3973 Accesses

Abstract

Nanotechnology is rapidly growing and has great potential in various fields such as biomedical engineering, drug delivery, environmental health, pharmaceutical industries and even electronics and communication technologies. However, with this rapid development, these new nanoscale materials (including nanotubes, nanowires, nanowhiskers, fullerenes or buckyballs, and quantum dots) might have unintended human health and environmental hazards. Testing for toxicological parameters is a necessary first step toward ensuring the compatibility of nanomaterials for medical applications and for the safety of the environment. Here, we describe an array formatted electrical impedance sensing (EIS) system that is capable of measuring nanotoxicity in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500

    Article  PubMed  CAS  Google Scholar 

  2. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  PubMed  CAS  Google Scholar 

  3. Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155

    Article  CAS  Google Scholar 

  4. Banerjee R, Katsenovich Y, Lagos L, Senn M, Naja M, Balsamo V, Pannell KH, Li C-Z (2010) Functional magnetic nanoshells integrated nanosensor for trace analysis of environmental uranium contamination. Electrochim Acta. doi:17(27): 3120–3141

    Google Scholar 

  5. Liu C, Alwarappan S, Li C-Z (2010) Design and characterization of novel membraneless enzymatic biofuel cell based on graphene nanosheets. Biosens Bioelectron 7:1829–1833

    Article  Google Scholar 

  6. Alwarappan S, Li C-Z (2010) Simultaneous detection of dopamine, ascorbic acid and uric acid at electrochemically activated carbon nanotube biosensors. Nanomedicine 6:52–57

    Article  PubMed  CAS  Google Scholar 

  7. Alwarappan S, Prabhulkar S, Durygin A, Li C-Z (2009) The effect of electrochemical pretreatment on the sensing performance of single walled carbon nanotubes. J Nanosci Nanotechnol 9:2991–2996

    Article  PubMed  CAS  Google Scholar 

  8. Li C-Z, Choi W-B, Chuang C-H (2008) Enhancement of photocurrents by finite-sized SWNT based thin films. Electrochim Acta 54:821–828

    Article  CAS  Google Scholar 

  9. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  PubMed  CAS  Google Scholar 

  10. Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55

    Article  Google Scholar 

  11. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh PS, Kim CK, Han G, Forbes NS, Rotello VM (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2:2213–2218

    Article  PubMed  CAS  Google Scholar 

  13. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3:6–16

    Article  PubMed  Google Scholar 

  14. Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318

    Article  PubMed  CAS  Google Scholar 

  15. Mossman BT, Borm PJ, Castranova V, Costa DL, Donaldson K, Kleeberger SR (2007) Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part Fibre Toxicol 4:1–4

    Article  Google Scholar 

  16. Elder A, Vidyasagar S, DeLouise L (2009) Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:434–450

    Article  PubMed  CAS  Google Scholar 

  17. Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22:672–688

    Article  PubMed  CAS  Google Scholar 

  18. Xinfeng S, Balaji S, Quynh PP, Patrick PS, Jared LH, Lon JW, James MT, Robert MR, Antonios GM (2008) In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J Biomed Mater Res A 86:813–823

    Google Scholar 

Download references

Acknowledgments

the work is currently supported by NIH 1 R15 ES021079-01 of Department of Defense/US Army Medical Research and Material Command, Wallace H. Coulter Foundation, and NSF MRI 0821582. We would like to thank the Advanced Material Engineering Research Institute (AMERI) at FIU for allowing us to use the MEMS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Zhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hondroulis, E., Li, CZ. (2012). Whole Cell Impedance Biosensoring Devices. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics