Skip to main content

Genetic Analysis of Xenopus tropicalis

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

The pipid frog Xenopus tropicalis has emerged as a powerful new model system for combining genetic and genomic analysis of tetrapod development with robust embryological, molecular, and biochemical assays. Its early development closely resembles that of its well-understood relative X. laevis, from which techniques and reagents can be readily transferred. In contrast to the tetraploid X. laevis, X. tropicalis has a compact diploid genome with strong synteny to those of amniotes. Recently, advances in high-throughput sequencing together with solution-hybridization whole-exome enrichment technology offer powerful strategies for cloning novel mutations as well as reverse genetic identification of sequence lesions in specific genes of interest. Further advantages include the wide range of functional and molecular assays available, the large number of embryos/meioses produced, and the ease of haploid genetics and gynogenesis. The addition of these genetic tools to X. tropicalis provides a uniquely flexible platform for analysis of gene function in vertebrate development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon JB, Hopwood N (2000) The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol 44:43–50

    PubMed  CAS  Google Scholar 

  2. Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27(12):507–515

    Article  PubMed  CAS  Google Scholar 

  3. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  CAS  Google Scholar 

  4. Wang BB, Muller-Immergluck MM, Austin J, Robinson NT, Chisholm A, Kenyon C (1993) A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74:29–42

    Article  PubMed  CAS  Google Scholar 

  5. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  PubMed  CAS  Google Scholar 

  6. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  7. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  PubMed  CAS  Google Scholar 

  8. Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5:283–288

    Article  PubMed  CAS  Google Scholar 

  9. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  10. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  11. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  PubMed  CAS  Google Scholar 

  12. Bewick AJ, Anderson DW, Evans BJ (2010) Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712

    Article  PubMed  Google Scholar 

  13. Tinsley, RC, Kobel, HR (1996) The Biology of Xenopus, Oxford University Press, Oxford

    Google Scholar 

  14. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  PubMed  CAS  Google Scholar 

  15. Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB (2006) Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2:e91

    Article  PubMed  Google Scholar 

  16. Grammer TC, Khokha MK, Lane MA, Lam K, Harland RM (2005) Identification of mutants in inbred Xenopus tropicalis. Mech Dev 122:263–272

    Article  PubMed  CAS  Google Scholar 

  17. Noramly S, Zimmerman L, Cox A, Aloise R, Fisher M, Grainger RM (2005) A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech Dev 122:273–287

    Article  PubMed  CAS  Google Scholar 

  18. Abu-Daya A, Sater AK, Wells DE, Mohun TJ, Zimmerman LB (2009) Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 336:20–29

    Article  PubMed  CAS  Google Scholar 

  19. Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MP, Zimmerman LB (2010) The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev Biol 349:204–212

    Article  PubMed  Google Scholar 

  20. Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:75

    Article  PubMed  Google Scholar 

  21. Waldner C, Sakamaki K, Ueno N, Turan G, Ryffel GU (2006) Transgenic Xenopus laevis strain expressing cre recombinase in muscle cells. Dev Dyn 235:2220–2228

    Article  PubMed  CAS  Google Scholar 

  22. Amaya E (2005) Xenomics. Genome Res 15:1683–1691

    Article  PubMed  CAS  Google Scholar 

  23. Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CY, Kaufman S, Lam DK, Macha J, Ngo C, Prakash N, Schmidt P, Tlapakova T, Trivedi T, Tumova L, Abu-Daya A, Geach T, Vendrell E, Ironfield H, Sinzelle L, Sater AK, Wells DE, Harland RM, Zimmerman LB (2009) Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn 238:1398–1446

    Article  PubMed  CAS  Google Scholar 

  24. Elsdale TR, Gurdon JB, Fischberg M (1960) A description of the technique for nuclear transplantation in Xenopus laevis. J Embryol Exp Morphol 8:437–444

    PubMed  CAS  Google Scholar 

  25. Reinschmidt D, Friedman J, Hauth J, Ratner E, Cohen M, Miller M, Krotoski D, Tompkins R (1985) Gene-centromere mapping in Xenopus laevis. J Hered 76:345–347

    PubMed  CAS  Google Scholar 

  26. Tompkins R, Reinschmidt D (1991) Experimentally induced homozygosity in Xenopus laevis. Methods Cell Biol 36:35–44

    Article  PubMed  CAS  Google Scholar 

  27. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108:7052–7057

    Article  PubMed  CAS  Google Scholar 

  28. Yergeau DA, Kuliyev E, Mead PE (2007) Injection-mediated transposon transgenesis in Xenopus tropicalis and the identification of integration sites by modified extension primer tag selection (EPTS) linker-mediated PCR. Nat Protoc 2:2975–2986

    Article  PubMed  CAS  Google Scholar 

  29. Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE (2010) Remobilization of Tol2 transposons in Xenopus tropicalis. BMC Dev Biol 10:11

    Article  PubMed  Google Scholar 

  30. Wells D, Gutierrez L, Xu Z, Krylov V, Macha J, Blankenburg K, Hitchens M, Bellot L, Spivey M, Kowis A, Ye Y, Pasternak S, Owen J, Tran T, Slavikova R, Tumova L, Tlapakova T, Seifertova E, Scherer S, Sater A (2011) A genetic map of Xenopus tropicalis. Dev Biol 354(1):1–8

    Article  PubMed  CAS  Google Scholar 

  31. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123:103–113

    Article  PubMed  CAS  Google Scholar 

  32. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2:975–979

    Article  PubMed  CAS  Google Scholar 

  33. Hirsch N, Zimmerman LB, Gray J, Chae J, Curran KL, Fisher M, Ogino H, Grainger RM (2002) Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev Dyn 225:522–535

    Article  PubMed  CAS  Google Scholar 

  34. Chae J, Zimmerman LB, Grainger RM (2002) Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech Dev 117:235–241

    Article  PubMed  CAS  Google Scholar 

  35. Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci U S A 99:1377–1382

    Article  PubMed  CAS  Google Scholar 

  36. Ryffel GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31:e44

    Article  PubMed  Google Scholar 

  37. Lehman CW, Carroll D (1991) Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes. Proc Natl Acad Sci U S A 88:10840–10844

    Article  PubMed  CAS  Google Scholar 

  38. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed  CAS  Google Scholar 

  39. Carruthers S, Stemple DL (2006) Genetic and genomic prospects for Xenopus tropicalis research. Semin Cell Dev Biol 17:146–153

    Article  PubMed  CAS  Google Scholar 

  40. Showell C, Carruthers S, Hall A, Pardo-Manuel de Villena F, Stemple D, Conlon FL (2011) a comparative survey of the frequency and distribution of polymorphism in the genome of Xenopus tropicalis. PLoS One 6:e22392

    Article  PubMed  CAS  Google Scholar 

  41. Sargent MG, Mohun TJ (2005) Cryopreser­vation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41:41–46

    Article  PubMed  Google Scholar 

  42. Bahary N, Davidson A, Ransom D, Shepard J, Stern H, Trede N, Zhou Y, Barut B, Zon LI (2004) The Zon laboratory guide to positional cloning in zebrafish. Methods Cell Biol 77:305–329

    Article  PubMed  CAS  Google Scholar 

  43. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  44. Streisinger G, Singer F, Walker C, Knauber D, Dower N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311–319

    PubMed  CAS  Google Scholar 

  45. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  46. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  47. Chang Y-F, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many colleagues contributed to these protocols. In addition to past and present members of the Zimmerman and Stemple laboratories, the authors would particularly like to thank Rob Grainger and Takuya Nakayama (University of Virginia), Richard Harland (UC Berkeley), and Mustafa Khokha (Yale). T.J.G. and L.B.Z. are funded by UK Medical Research Council U117560482; DLS by the Wellcome Trust WT 077047/Z/05/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle B. Zimmerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Geach, T.J., Stemple, D.L., Zimmerman, L.B. (2012). Genetic Analysis of Xenopus tropicalis . In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics