Skip to main content

Maternal mRNA Knock-down Studies: Antisense Experiments Using the Host-Transfer Technique in Xenopus laevis and Xenopus tropicalis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

The ability to inhibit the activity of maternally stored gene products in Xenopus has led to numerous insights into early developmental mechanisms. Oocytes can be cultured and manipulated in vitro and then implanted into the body cavity of a host female to make them competent for fertilization. Here, we summarize the methods for obtaining, culturing, and fertilizing Xenopus oocytes, with the goal of inhibiting maternal gene function through antisense oligonucleotide-mediated mRNA knock-down. We describe a simplified technique for implanting donor oocytes into host females using intraperitoneal injection. Also, we present optimized methods for performing the host-transfer procedure with Xenopus tropicalis oocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bachvarova R, Davidson E (1966) Nuclear activation at the onset of amphibian gastrulation. J Exp Zool 163:285–295

    Article  Google Scholar 

  2. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  PubMed  CAS  Google Scholar 

  3. Heasman J (2006) Patterning the early Xenopus embryo. Development 133:1205–1217

    Article  PubMed  CAS  Google Scholar 

  4. Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, Mullins MC (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6:771–780

    Article  PubMed  CAS  Google Scholar 

  5. Wagner DS, Dosch R, Mintzer KA, Wiemelt AP, Mullins MC (2004) Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6:781–790

    Article  PubMed  CAS  Google Scholar 

  6. Hulstrand AM, Schneider PN, Houston DW (2010) The use of antisense oligonucleotides in Xenopus oocytes. Methods 51(1):75–81

    Article  PubMed  CAS  Google Scholar 

  7. Mir A, Heasman J (2008) How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique. Methods Mol Biol 469:417–429

    Article  PubMed  CAS  Google Scholar 

  8. Torpey N, Wylie CC, Heasman J (1992) Function of maternal cytokeratin in Xenopus development. Nature 357:413–415

    Article  PubMed  CAS  Google Scholar 

  9. Cazenave C, Chevrier M, Nguyen TT, Hélène C (1987) Rate of degradation of [alpha]- and [beta]-oligodeoxynucleotides in Xenopus oocytes. Implications for anti-messenger strategies. Nucleic Acids Res 15:10507–10521

    Article  PubMed  CAS  Google Scholar 

  10. Dash P, Lotan I, Knapp M, Kandel ER, Goelet P (1987) Selective elimination of mRNAs in vivo: complementary oligodeoxynucleotides promote RNA degradation by an RNase H-like activity. Proc Natl Acad Sci U S A 84:7896–7900

    Article  PubMed  CAS  Google Scholar 

  11. Brun R (1975) Oocyte maturation in vitro: contribution of the oviduct to total maturation in Xenopus laevis. Experientia 31:1275–1276

    Article  PubMed  CAS  Google Scholar 

  12. Holwill S, Heasman J, Crawley C, Wylie CC (1987) Axis and germ line deficiencies caused by u.v irradiation of Xenopus oocytes cultured in vitro. Development 100:735–743

    Google Scholar 

  13. Smith LD, Ecker RE, Subtelny S (1968) In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles. Dev Biol 17:627–643

    Article  PubMed  CAS  Google Scholar 

  14. Kloc M, Miller M, Carrasco AE, Eastman E, Etkin L (1989) The maternal store of the xlgv7 mRNA in full-grown oocytes is not required for normal development in Xenopus. Development 107:899–907

    PubMed  CAS  Google Scholar 

  15. Elinson R (1973) Fertilization of frog body cavity eggs enhanced by treatments affecting the vitelline coat. J Exp Zool 183:291–302

    Article  Google Scholar 

  16. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  17. Schorderet-Slatkine S, Drury KC (1973) Progesterone induced maturation in oocytes of Xenopus laevis. Appearance of a ‘maturation promoting factor’ in enucleated oocytes. Cell Differ 2:247–254

    Article  PubMed  CAS  Google Scholar 

  18. Rugh R (1935) Ovulation in the frog. II. Follicular rupture to fertilization. J Exp Zool 71:163–194

    Article  Google Scholar 

  19. Dumont J (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  PubMed  CAS  Google Scholar 

  20. Heasman J, Holwill S, Wylie CC (1991) Fertilization of cultured Xenopus oocytes and use in studies of maternally inherited molecules. Methods Cell Biol 36:213–230

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, P.N., Hulstrand, A.M., and Houston, D.W. (2010). Fertilization of Xenopus oocytes using the host-transfer method. J Vis Exp, e1864.

    Google Scholar 

  22. Lindsay L, Peavy T, Lejano R, Hedrick J (2003) Cross-fertilization and structural comparison of egg extracellular matrix glycoproteins from Xenopus laevis and Xenopus tropicalis. Comp Biochem Physiol A Mol Integr Physiol 136:343–352

    Article  PubMed  CAS  Google Scholar 

  23. Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222:124–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM083999 (DWH) and The University of Iowa (DWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Olson, D.J., Hulstrand, A.M., Houston, D.W. (2012). Maternal mRNA Knock-down Studies: Antisense Experiments Using the Host-Transfer Technique in Xenopus laevis and Xenopus tropicalis . In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics