Skip to main content

Selection of Antibody Fragments by Yeast Display

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

The critical need for renewable, high-quality affinity reagents in biological research, as well as for diagnostic and therapeutic applications, has required the development of new platforms of discovery. Yeast display is one of the main methods of in vitro display technology with phage display. Yeast display has been chosen by numerous groups to refine both affinity and specificity of antibodies because it enables fine discrimination between mutant clones of similar affinity. In addition, the construction of display libraries of antibody fragments in yeast permit to sample the immune antibody repertoire more fully than using phage. This chapter gives an updated overview of the available systems of yeast display platforms and libraries, followed up by technical descriptions of selection methods of antibody fragments by yeast display.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mondon P, Dubreuil O, Bouayadi K, Kharrat H (2008) Human antibody libraries: a race to engineer and explore a larger diversity. Front Biosci 13:1117–1129

    Article  CAS  PubMed  Google Scholar 

  2. Baird CL, Fischer CJ, Pefaur NB, Miller KD, Kagan J, Srivastava S, Rodland KD (2010) Developing recombinant antibodies for biomarker detection. Cancer Biomark 6(5–6):271–279

    PubMed  Google Scholar 

  3. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gould LH, Sui J, Foellmer H, Oliphant T, Wang T, Ledizet M, Murakami A, Noonan K, Lambeth C, Kar K, Anderson JF, de Silva AM, Diamond MS, Koski RA, Marasco WA, Fikrig E (2005) Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus. J Virol 79(23):14606–14613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi BE, Olshevsky U, Fremont DH, Pierson TC, Diamond MS (2006) Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol 80(24):12149–12159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR (2010) Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS One 5(8):e12237

    Article  PubMed Central  PubMed  Google Scholar 

  7. Borodina I, Jensen BM, Sondergaard I, Poulsen LK (2010) Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae. Microb Cell Fact 9:74

    Article  PubMed Central  PubMed  Google Scholar 

  8. Abe H, Shimma Y, Jigami Y (2003) In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13(2):87–95

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392

    Article  CAS  PubMed  Google Scholar 

  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557

    Article  CAS  PubMed  Google Scholar 

  11. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16(1):31–37

    Article  CAS  PubMed  Google Scholar 

  12. Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444

    CAS  PubMed  Google Scholar 

  13. Peelle BR, Krauland EM, Wittrup KD, Belcher AM (2005) Probing the interface between biomolecules and inorganic materials using yeast surface display and genetic engineering. Acta Biomater 1(2):145–154

    Article  PubMed  Google Scholar 

  14. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20(2):81–90

    Article  CAS  PubMed  Google Scholar 

  15. Siegel RW (2009) Antibody affinity optimization using yeast cell surface display. Methods Mol Biol 504:351–383

    Article  CAS  PubMed  Google Scholar 

  16. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260(3):359–368

    Article  CAS  PubMed  Google Scholar 

  17. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  18. van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546(2–3):288–294

    Article  PubMed  Google Scholar 

  19. Wang Z, Kim GB, Woo JH, Liu YY, Mathias A, Stavrou S, Neville DM Jr (2007) Improvement of a recombinant anti-monkey anti-CD3 diphtheria toxin based immunotoxin by yeast display affinity maturation of the scFv. Bioconjug Chem 18(3):947–955

    Article  CAS  PubMed  Google Scholar 

  20. Chowdhury PS, Wu H (2005) Tailor-made antibody therapeutics. Methods 36(1):11–24

    Article  CAS  PubMed  Google Scholar 

  21. Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18(7):754–759

    Article  CAS  PubMed  Google Scholar 

  22. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ, Siegel RW (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel 18(11):527–536

    Article  CAS  PubMed  Google Scholar 

  23. Orcutt KD, Slusarczyk AL, Cieslewicz M, Ruiz-Yi B, Bhushan KR, Frangioni JV, Wittrup KD (2011) Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol 38(2):223–233

    Article  CAS  PubMed  Google Scholar 

  24. Starwalt SE, Masteller EL, Bluestone JA, Kranz DM (2003) Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  25. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564(1–2):24–34

    Article  CAS  PubMed  Google Scholar 

  26. Lim KH, Madabhushi SR, Mann J, Neelamegham S, Park S (2010) Disulfide trapping of protein complexes on the yeast surface. Biotechnol Bioeng 106(1):27–41

    CAS  PubMed  Google Scholar 

  27. Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104(16):6632–6637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173

    Article  CAS  PubMed  Google Scholar 

  30. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng Des Sel 18(7):337–343

    Article  PubMed  Google Scholar 

  32. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruine AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274(26):18218–18230

    Article  PubMed  Google Scholar 

  33. Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24(1–2):3–9

    Article  CAS  PubMed  Google Scholar 

  34. Tasumi S, Velikovsky CA, Xu G, Gai SA, Wittrup KD, Flajnik MF, Mariuzza RA, Pancer Z (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106(31):12891–12896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Boder ET, Bill JR, Nields AW, Marrack PC, Kappler JW (2005) Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol Bioeng 92(4):485–491

    Article  CAS  PubMed  Google Scholar 

  36. Jones LL, Brophy SE, Bankovich AJ, Colf LA, Hanick NA, Garcia KC, Kranz DM (2006) Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld. J Biol Chem 281(35):25734–25744

    Article  CAS  PubMed  Google Scholar 

  37. Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci U S A 96(10):5651–5656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Richman SA, Aggen DH, Dossett ML, Donermeyer DL, Allen PM, Greenberg PD, Kranz DM (2009) Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain ValphaVbeta fragments. Mol Immunol 46(5):902–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Parthasarathy R, Subramanian S, Boder ET, Discher DE (2006) Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnol Bioeng 93(1):159–168

    Article  CAS  PubMed  Google Scholar 

  40. Wang KC, Patel CA, Wang J, Wang X, Luo PP, Zhong P (2010) Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. J Immunol Methods 354(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  41. Scholler N, Garvik B, Quarles T, Jiang S, Urban N (2006) Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 317(1–2):132–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovsek D (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24(6):525–530

    Article  CAS  PubMed  Google Scholar 

  43. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325

    Article  CAS  PubMed  Google Scholar 

  44. Berdichevsky M, d’Anjou M, Mallem MR, Shaikh SS, Potgieter TI (2011) Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 155(2):217–224

    Article  CAS  PubMed  Google Scholar 

  45. Jacobs PP, Ryckaert S, Geysens S, De Vusser K, Callewaert N, Contreras R (2008) Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnol Lett 30(12):2173–2181

    Article  CAS  PubMed  Google Scholar 

  46. Su GD, Zhang X, Lin Y (2010) Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol Lett 32(8):1131–1136

    Article  CAS  PubMed  Google Scholar 

  47. Ryckaert S, Pardon E, Steyaert J, Callewaert N (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 145(2):93–98

    Article  CAS  PubMed  Google Scholar 

  48. Jo JH, Im EM, Kim SH, Lee HH (2011) Surface display of human lactoferrin using a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 33(6):1113–1120

    Article  CAS  PubMed  Google Scholar 

  49. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  50. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116

    Article  CAS  PubMed  Google Scholar 

  51. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170

    Article  CAS  PubMed  Google Scholar 

  52. Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N (2011) Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods 363(2):221–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768

    Article  CAS  PubMed  Google Scholar 

  54. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304(1–2):30–42

    Article  CAS  PubMed  Google Scholar 

  55. Wang XX, Cho YK, Shusta EV (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4(2):143–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Scholler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scholler, N. (2012). Selection of Antibody Fragments by Yeast Display. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics