Skip to main content

Auditory and Vestibular Systems

  • Chapter
  • First Online:
Noback's Human Nervous System, Seventh Edition

Abstract

The auditory and vestibular systems often are considered together because their end organs share space within the petrous portion of the temporal bone (Fig. 16.1) and both arise from the otic vesicle. They also share the VIIIth cranial nerve, albeit the two almost completely separate divisions, auditory and vestibular classified as special somatic afferent. However, the auditory system is exteroceptive, whose purpose is to transduce airborne waves in the acoustic spectrum and most importantly deliver signals to higher centers of the auditory system for perception of sounds. The vestibular system in contrast is proprioceptive. Its receptors monitor head position and movement and convey this information into the brain stem, where it is integrated into the motor systems. The vestibular system is important for maintaining equilibrium and upright posture and for control of synergistic eye movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Fernandez C, Lysakowski A, Goldberg JM. 1995. Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a ­comparison to the chinchilla. J Neurophysiol. 73: 1253–1269.

    PubMed  CAS  Google Scholar 

  • Goldberg JM. 2000. Afferent diversity and the organization of central vestibular pathways. Exp Brain Res. 130:277–297.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Brichta AM. 1998. Evolutionary trends in the organization of the vertebrate crista ampullaris. Otolaryngol Head Neck Surg. 119:165–171.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths TD. 2002. Central auditory pathologies. Br Med Bull. 63:107–120.

    Article  PubMed  Google Scholar 

  • Griffiths TD, Bates D, Rees A, Witton C, Gholkar A, Green GG. 1997. Sound movement detection deficit due to a brainstem lesion. J Neurol Neurosurg Psychiatry. 62:522–526.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths TD, Green GG, Rees A, Rees G. 2000. Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp. 9:72–80.

    Article  PubMed  CAS  Google Scholar 

  • Highstein S, Fay RR, Popper AN, editors. 2004. The ­vestibular system. New York: Springer.

    Google Scholar 

  • Hudspeth AJ. 2001. How the ear’s works work: mechanoelectrical transduction and amplification by hair cells of the internal ear. Harvey Lect. 97:41–54.

    PubMed  Google Scholar 

  • Hudspeth AJ, Logothetis NK. 2000. Sensory systems. Curr Opin Neurobiol. 10:631–641.

    Article  PubMed  CAS  Google Scholar 

  • Jones EG. 2003. Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci. 999:218–233.

    Article  PubMed  CAS  Google Scholar 

  • Minor LB, Goldberg JM. 1991. Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional-ablation study in the squirrel monkey. J Neurosci. 11:1636–1648.

    PubMed  CAS  Google Scholar 

  • Moore JK. 2000. Organization of the human superior olivary complex. Microsc Res Tech. 51:403–412.

    Article  PubMed  CAS  Google Scholar 

  • Moore JK. 2002. Maturation of human auditory cortex: implications for speech perception. Ann Otol Rhinol Laryngol Suppl. 189:7–10.

    PubMed  Google Scholar 

  • Peyman A, Sereda M, Hall DA. 2009. The mechanisms of tinnitus: Perspectives from human functional neuroimaging. Hearing Research. 253:15–31.

    Article  Google Scholar 

  • Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, Mishkin M. 2003. Functional mapping of the primate auditory system. Science. 299:568–572.

    Article  PubMed  CAS  Google Scholar 

  • Warren JD, Zielinski BA, Green GG, Rauschecker JP, Griffiths TD. 2002. Perception of sound-source motion by the human brain. Neuron. 34:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Wong D, Pisoni DB, Learn J, Gandour JT, Miyamoto RT, Hutchins GD. 2002. PET imaging of differential cortical activation by monaural speech and nonspeech stimuli. Hear Res. 166:9–23.

    Article  PubMed  Google Scholar 

  • Zhang LI, Tan AY, Schreiner CE, Merzenich MM. 2003. Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature. 424:201–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strominger, N.L., Demarest, R.J., Laemle, L.B. (2012). Auditory and Vestibular Systems. In: Noback's Human Nervous System, Seventh Edition. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-779-8_16

Download citation

Publish with us

Policies and ethics