Skip to main content

Motoneurons and Motor Pathways

  • Chapter
  • First Online:
Noback's Human Nervous System, Seventh Edition

Abstract

The sensory systems create our mental images of the external world. These representations provide us with information and cues that guide the motor systems to generate movements produced by the coordinated contractions and relaxations. The motor systems are hierarchically organized in the central nervous system (CNS) as the spinal neuronal circuits that control the automatic stereotypic reflexes (Chap. 8). Higher centers in the brainstem mediate postural controlled and rhythmic locomotor movements. The highest centers, including the motor areas of the cerebral cortex, initiate and regulate complex skilled voluntary movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Asanuma H. 1998. The Motor Cortex. New York: Raven

    Google Scholar 

  • Bock G, Goode J, eds. 1989 Sensory Guidance of Movement. New York: Wiley.

    Google Scholar 

  • Brooks VB. 1986. The Neural Basis of Motor Control. New York: Oxford University Press.

    Google Scholar 

  • Capaday C. 2002. The special nature of human walking and its neural control Trends Neurosci. 25:370–376.

    Article  PubMed  CAS  Google Scholar 

  • Dietz V. 1992. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev. 72:33–69.

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL. 2002. Motor areas in the frontal lobe of the primate. Physiol Behav. 77:677–682.

    Google Scholar 

  • Everts E. 1981. Role of motor cortex in voluntary movements in primates. In Brooks VE, ed. Handbook of Physiology. Bethesda, MD: American Physiological Society; 1083–1120.

    Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. 2001. In vivo behaviour of human muscle tendon during walking. Proc R Soc Lond B Biol Sci. 268:229–233.

    Article  CAS  Google Scholar 

  • Georgopoulos AP. 1994. New concepts in generation of movement. Neuron.13:257–268.

    Google Scholar 

  • Georgopoulos AP. 2002. Cognitive motor control: spatial and temporal aspects. Curr Opin Neurobiol.12:678–683.

    Google Scholar 

  • Grillner S. 1996. Neural networks for vertebrate locomotion. Sci Am. 274:64–69.

    Article  PubMed  CAS  Google Scholar 

  • Grillner S. 2003. The motor infrastructure: from ion ­channels to neuronal networks. Nature Rev. Neurosci. 4:573–586.

    Google Scholar 

  • Grillner S, Wallen P. 2004. Innate versus learned movements—a false dichotomy? Prog Brain Res. 143:3–12.

    Google Scholar 

  • Halsband U, Freund HJ. 1993. Motor learning. Curr Opin Neurobiol. 3:940–949.

    Article  PubMed  CAS  Google Scholar 

  • Lam T, Pearson KG. 2002. The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol. 508:343–355.

    Article  PubMed  Google Scholar 

  • Lieber R. 2002. Skeletal Muscle Structure, Function, & Plasticity: The Physiological Basis of Rehabilitation. 2nd ed. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Lieber RL, Friden J. 2001. Clinical significance of skeletal muscle architecture. Clin Orthop. 383:140–151.

    Article  PubMed  Google Scholar 

  • MacNeilage PF, Davis BL. 2001. Motor mechanisms in speech ontogeny: phylogenetic, neurobiological and linguistic implications. Curr Opin Neurobiol. 11:696–700.

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA. 2001. Spinal circuitry of sensorimotor control of locomotion. J Physiol. 533:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Pearson K. 2000. Motor systems. Curr Opin Neurobiol. 10:649–654.

    Article  PubMed  CAS  Google Scholar 

  • Phillips C. 1986. Movements of the hand. Liverpool: Liverpool University Press.

    Google Scholar 

  • Rizzolatti G, Luppino G. 2001. The cortical motor system. Neuron. 31:889–901.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell J. 1994. Control of Human Voluntary Movement. 2nd ed. New York: Chapman & Hall.

    Book  Google Scholar 

  • Ungerleider LG, Doyon J, Karni A. 2002. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem. 78:553–564.

    Article  PubMed  Google Scholar 

  • Wiesendanger M, Wise SP. 1992. Current issues concerning the functional organization of motor cortical areas in nonhuman primates. Adv Neurol. 57:117–134.

    PubMed  CAS  Google Scholar 

  • Wing A, Haggard P, Flanagan J. 1996. Hand and Brain: The Neurophysiology and Psychology of Hand Movements. San Diego: Academic Press.

    Google Scholar 

  • Wise SP. 1985. The primate premotor cortex fifty years after Fulton. Behav Brain Res. 18:79–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strominger, N.L., Demarest, R.J., Laemle, L.B. (2012). Motoneurons and Motor Pathways. In: Noback's Human Nervous System, Seventh Edition. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-779-8_11

Download citation

Publish with us

Policies and ethics