Skip to main content

Construction and Analysis of Phylogenetic Trees Using DNA Barcode Data

  • Protocol
  • First Online:
Book cover DNA Barcodes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 858))

Abstract

The assembly of sequence data obtained from DNA barcodes into phylogenies or NJ trees has proven highly useful in estimating relatedness among species as well as providing a framework in which hypotheses regarding the evolution of traits or species distributions may be investigated. In this chapter, we outline the process by which DNA sequence data is assembled into a phylogenetically informative matrix, and then provide details on the methods to reconstruct NJ or phylogenetic trees that employ DNA barcode data, using only barcode data or combining barcodes with other data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Boston

    Google Scholar 

  2. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    Article  PubMed  Google Scholar 

  3. Harvey PH, Leigh Brown AJ, Maynard SJ, Nee S (2006) New uses for new phylogenies. Oxford University Press, Oxford

    Google Scholar 

  4. Smith MA, Rodriguez JJ, Whitfield JB et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history. DNA barcoding, morphology, and collections. Proc Nat Acad Sci USA 105:12359–12364

    Article  PubMed  CAS  Google Scholar 

  5. Kress WJ, Erickson DL, Jones FA et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Nat Acad Sci USA 106:18621–18626

    Article  PubMed  CAS  Google Scholar 

  6. Schreeg LA, Kress WJ, Erickson DL, Swenson NG (2010) Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest. PLoS One 5:e13685. doi:10.1371/journal.pone.0013685

    Article  PubMed  Google Scholar 

  7. Uriarte M, Swenson N, Chazdon R et al (2010) Trait similarity, shared ancestry, and the structure of neighborhood interactions in a subtropical forest: Implications for community assembly. Ecol Lett 13:1503–1514

    Article  PubMed  Google Scholar 

  8. Forest F, Grenyer R, Rouget M et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  9. Hardy OJ, Jost L (2008) Interpreting and estimating measures of community phylogenetic structuring. J Ecol 96:849–852. doi:10.1111/j.1365-2745.2008.01423.x

    Article  Google Scholar 

  10. Smith S, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37. doi:10.1186/1471-2148-9-37

    Article  PubMed  Google Scholar 

  11. Bininda-Emonds ORP (2005) transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:156. doi:10.1186/1471-2105-6-156

    Article  PubMed  Google Scholar 

  12. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  13. Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  PubMed  CAS  Google Scholar 

  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  15. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728. doi:10.1080/10635150600969864

    Article  PubMed  Google Scholar 

  16. Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution, version 4.0. Sinauer Associates, Sunderland, MA

    Google Scholar 

  17. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods) version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  18. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  19. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation, The University of Texas at Austin

    Google Scholar 

  20. Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In: Proceedings of 8th international conference on parallel computing technologies (PaCT2005). Lect Notes Comput Sci 3506288-302. Springer Verlag, Berlin

    Google Scholar 

  21. Evans J, Sheneman L, Foster JA (2006) Relaxed neighbor-joining: a fast distance-based phylogenetic tree construction method. J Mol Evol 62:785–792

    Article  PubMed  CAS  Google Scholar 

  22. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  23. Driskell AC, Ané C, Burleigh JG et al (2004) Prospects for building the tree of life from large sequence databases. Science 306:1172–1174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Erickson, D.L., Driskell, A.C. (2012). Construction and Analysis of Phylogenetic Trees Using DNA Barcode Data. In: Kress, W., Erickson, D. (eds) DNA Barcodes. Methods in Molecular Biology, vol 858. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-591-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-591-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-590-9

  • Online ISBN: 978-1-61779-591-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics